Skip to main content
Log in

Passage of a Gasless Combustion Wave through a Perforated Barrier

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The passage of a high-temperature synthesis wave through a perforated metal plate mounted inside a cylindrical sample of a Ni + Al powder mixture was studied experimentally and theoretically. Copper and steel plates of different thickness were used. The propagation of the exothermic reaction front through a hole in the barrier was investigated for different thermophysical characteristics of the plate and different geometric dimensions of the hole. The minimum critical diameter of the hole required for the propagation of the combustion wave in the sample was determined as a function of plate parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. A. S. Rogachev and A. S. Mukasyan, Combustion for Material Synthesis (CRC Press, 2015).

    Google Scholar 

  2. D. E. Andreev, D. M. Ikornikov, V. I. Yukhvid, and V. N. Sanin, “Combustion of a High-Calorific Thermite Mixture on the Surfaces of a Titanium Substrate," Fiz. Goreniya Vzryva 53 (5), 93–98 (2017) [Combust., Expl., Shock Waves 53 (5), 574–579 (2017); https://doi.org/10.1134/S0010508217050112].

    Article  Google Scholar 

  3. V. I. Yukhvid, D. E. Andreev, V. N. Sanin, and N. V. Sachkova “Autowave Chemical Transformations of Highly Exothermic Mixtures Based on Niobium Oxide with Aluminum," Fiz. Goreniya Vzryva 53 (5), 99–102 (2017) [Combust., Expl., Shock Waves 53 (5), 580–584 (2017); https://doi.org/10.1134/S0010508217050124].

    Article  Google Scholar 

  4. V. I. Yukhvid, D. E. Andreev, D. M. Ikornikov, V. N. Sanin, N. V. Sachkova, and I. D. Kovalev, “Combustion of Titanium Oxide Based Thermite Systems with a Complex Reducing Agent and an Energy Additive under the Influence of Overload," Fiz. Goreniya Vzryva 55 (6), 43–49 (2019) [Combust., Expl., Shock Waves 55 (6), 671–677 (2019); https://doi.org/10.1134/S0010508219060066].

    Article  Google Scholar 

  5. D. E. Andreev, Yu. S. Vdovin, V. I. Yukhvid, N. V. Sachkova, and I. D. Kovalev, “Centrifugal SHS-Metallurgy of Composite Materials Mo–Si–B," Khim. Fiz. 39 (3), 24–28 (2020) [Russ. J. Phys. Chem. B 14, 261–265 (2020); https://doi.org/10.1134/S1990793120020025].

    Article  Google Scholar 

  6. A. M. Stolin, P. M. Bazhin, M. I. Alymov, and M. V. Mikheev, “Self-Propagating High-Temperature Synthesis of Titanium Carbide Powder under Pressure-Shear Conditions," Neorg. Mater. 54 (6), 547–553 (2018) [Inorg. Mater. 54 (6), 521–527 (2018); https://doi.org/10.1134/S0020168518060146].

    Article  Google Scholar 

  7. P. M. Bazhin, A. M. Stolin, A. S. Konstantinov, A. P. Chizhikov, A. D. Prokopets, and M. I. Alymov, “Structural Features of Titanium Boride-Based Layered Composite Materials Produced by Free SHS-Compression," Dokl. Akad. Nauk 488 (3), 263–266 (2019) [Dokl. Chem. 488, 246–248 (2019); https://doi.org/10.1134/S0012500819090039].

    Article  Google Scholar 

  8. A. D. Prokopets, A. S. Konstantinov, A. P. Chizhikov, P. M. Bazhin, and A. M. Stolin, “General Trends of Structure Formation in Gradient Composite Materials Based on the Ti3 AlC2 MAX Phase on Titanium," Neorg. Mater. 56 (10), 1145–1150 (2020) [Inorg. Mater 56 (19), 1087–1091 (2020); https://doi.org/10.1134/S002016852010012X].

    Article  Google Scholar 

  9. A. S. Rogachev, “Mechanical Activation of Heterogeneous Exothermic Reactions in Powder Mixtures," Usp. Khim. 88 (9), 875–900 (2019) [Russ. Chem. Rev. 88 (9) 875–900 (2019); https://doi.org/10.1070/RCR4884].

    Article  ADS  Google Scholar 

  10. M. A. Korchagin, V. Yu. Filimonov, V. E. Smirnov, and N. Z. Lyakhov, “Thermal Explosion of a Mechanically Activated 3Ni + Al Mixture," Fiz. Goreniya Vzryva 46 (1), 48–53 (2010) [Combust., Expl., Shock Waves 46 (1), 41–46 (2010); https://doi.org/10.1007/s10573-010-0007-7].

    Article  Google Scholar 

  11. R. G. Abdulkarimova, T. A. Ketegenov, Z. A. Mansurov, O. V. Lapshin, V. G. Prokof’ev, and V. K. Smolyakov, “Effect of Phase Transformation on Nonisothermal Synthesis in Mechanically Activated Heterogeneous Systems," Fiz. Goreniya Vzryva 45 (1), 56–67 (2009) [Combust., Expl., Shock Waves 45 (1), 48–58 (2009); https://doi.org/10.1007/s10573-009-0007-7].

    Article  Google Scholar 

  12. S. S. Rybanin and L. N. Stesik, “Theory of Combustion of a Condensed Propellant with a Flat Heat-Conducting Element," Fiz. Goreniya Vzryva 10 (5), 634–643 (1974) [Combust., Expl., Shock Waves 10 (5) 553–561 (1974); https://doi.org/10.1007/BF01463965].

    Article  Google Scholar 

  13. N. N. Bakhman and I. N. Lobanov, “Influence of the Diameter of the Heat-Conducting Elements on Their Efficiency during the Combustion of Condensed Systems," Fiz. Goreniya Vzryva 19 (1), 46–50 (1983) [Combust., Expl., Shock Waves 19 (1), 42–46 (1983); https://doi.org/10.1007/BF00790235].

    Article  Google Scholar 

  14. V. G. Prokof’ev, A. V. Pisklov, V. K. Smolyakov, “Effect of a Heat-Conducting Element on the Gasless Combustion of Cylindrical Samples under Nonadiabatic Conditions," Fiz. Goreniya Vzryva 43 (1), 66–71(2007) [Combust., Expl., Shock Waves 43 (1), 56–61 (2007); https://doi.org/10.1007/s10573-007-0009-2].

    Article  Google Scholar 

  15. T. P. Ivleva, “Effect of Macroscopic Heterogeneity of the Medium on the Solid-State Combustion Wave Characteristics in Thermally and Chemically Heterogeneous Media," Fiz. Goreniya Vzryva 44 (3), 39–49 (2008) [Combust., Expl., Shock Waves 44 (3), 281–290 (2008); https://doi.org/10.1007/s10573-008-0036-7].

    Article  Google Scholar 

  16. O. I. Nefedova, S. S. Novikov, P. F. Pokhil, and Yu. S. Ryazantsev, “Effect of Initial Temperature on the Thickness of the Unburned Layer of Powder on a Metal Plate," Prikl. Mekh. Tekh. Fiz. 11 (2), 85–89 (1970) [J. Appl. Mech. Tech. Phys. 11 (2), 271–275 (1970); https://doi.org/10.1007/BF00908107].

    Article  ADS  Google Scholar 

  17. A. A. Zenin, O. I. Leipunskii, and V. M. Puchkov, “Combustion Zone Parameters of a Powder Extinguishing on a Substrate," Fiz. Goreniya Vzryva 14 (3), 75–78 (1978) [Combust., Expl., Shock Waves 14 (3), 331–334 (1978); https://doi.org/10.1007/BF00740498].

    Article  Google Scholar 

  18. A. A. Zenin, O. I. Leipunskii, S. V. Piskovskii, and V. M. Puchkov, “Combustion and Extinction of a Ballistite Propellant at Critical Diameter," Fiz. Goreniya Vzryva 12 (2), 179–185 (1976) [Combust., Expl., Shock Waves 12 (2) 56–161 (1976); https://doi.org/10.1007/BF00744878].

    Article  Google Scholar 

  19. Yu. S. Naiborodenko and V. I. Itin, “Gasless Combustion of Metal Powder Mixtures. I. Mechanism and Details," Fiz. Goreniya Vzryva 11 (3), 343–353 (1975) [Combust., Expl., Shock Waves 11 (3), 293–300 (1975); https://doi.org/10.1007/BF00740533].

    Article  Google Scholar 

  20. V. I. Itin and Yu. S. Naiborodenko, High-Temperature Synthesis of Intermetallic Compounds (Izd. Tomsk. Gos. Univ., Tomsk, 1989).

    Google Scholar 

  21. A. Yu. Krainov, “Influence of Thermophysical Characteristics of an Inert Obstacle and Heat Losses on Combustion Wave Propagation," Fiz. Goreniya Vzryva 23 (6), 16–19 (1987) [Combust., Expl., Shock Waves 23 (6) 676–679 (1987); https://doi.org/10.1007/BF00742519].

    Article  Google Scholar 

  22. P. M. Krishenik, S. V. Kostin, and S. A. Rogachev, “Thermal Energy Accumulation during Passage of a Combustion Wave through a Wedge-Shaped Obstacle," Fiz. Goreniya Vzryva 57 (2), 60–67 (2021) [Combust., Expl., Shock Waves 57 (2), 182–89 (2021); https://doi.org/10.1134/S0010508221020064].

    Article  Google Scholar 

  23. K. Maruta and N. I. Kim, “A Numerical Study on Propagation of Premixed Flames in Small Tubes," Combust. Flame 146 (1/2), 283–301 (2006); DOI: 10.1016/J.Combustflame.2006.03.004.

    Article  Google Scholar 

  24. S. Lin and X. Huang, “Quenching of Smoldering: Effect of Wall Cooling on Extinction," Proc. Combust. Inst. 38 (3), 5015–5022 (2021); DOI: 10.1016/j.proci.2020.05.017.

    Article  Google Scholar 

  25. F. V. Plathner, J. Quintiere, and P. Hees, “Analysis of Extinction and Sustained Ignition," Fire Saf. J. 105, 51–61 (2019); DOI: 10.1016/J.Firesaf.2019.02.003.

    Article  Google Scholar 

  26. R. M. Gabbasov, V. D. Kitler, V. G. Prokof’ev, and A. M. Shulpekov, “Layered NiAl/Cu/NiAl Composite by SHS in a Mode of Frontal Combustion," Int. J. Self-Propag. High Temp. Synth. 29 (2), 104–107 (2020); DOI: 10.3103/S1061386220020053.

    Article  Google Scholar 

  27. M. I. Shilyaev, V. E. Borzykh, and A. R. Dorokhov, “Laser Ignition of Nickel–Aluminum Powder Systems," Fiz. Goreniya Vzryva 30 (2), 14–18 (1994) [Combust., Expl., Shock Waves 30 (2), 147–150 (1994); https://doi.org/10.1007/BF00786119].

    Article  Google Scholar 

  28. A. V. Pisklov, V. G. Prokof’ev, and V. K. Smolyakov, “Solid-Flame Combustion of Cylindrical Samples with Stepwise Varying Diameter," Fiz. Goreniya Vzryva 45 (6), 26–30 (2009) [Combust., Expl., Shock Waves 45 (6), 657–661 (2009); https://doi.org/10.1007/s10573-009-0081-x].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Prokof’ev.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 6, pp. 33-40. https://doi.org/10.15372/FGV20220603.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gabbasov, R.M., Kitler, V.D., Prokof’ev, V.G. et al. Passage of a Gasless Combustion Wave through a Perforated Barrier. Combust Explos Shock Waves 58, 657–664 (2022). https://doi.org/10.1134/S001050822206003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050822206003X

Keywords

Navigation