Skip to main content
Log in

Thermodynamically Consistent Diffuse Interface Model for the Numerical Simulation of Interaction between Solid Explosive Detonation and Inert Materials

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

An improved diffuse interface model is proposed to numerically simulate the interaction dynamics between solid explosive detonation and compressible inert materials. The chemical reaction of solid explosive detonation is simplified as the solid-phase reactant is converted into a gas-phase product. Thus, the mixture within a control volume is regarded to be composed of three kinds of components: solid-phase reactant, gas-phase product, and inert materials. Due to their differences in thermodynamic properties, three kinds of components can be thought to be in mechanical equilibrium and thermal nonequilibrium. The evolution equation for the volume fractions of all components is derived on the basis of the entropy production and pressure equality among the components. The evolution equation for the pressure of the mixture is also obtained and added to the diffuse interface model. Thus, the governing equations of the proposed diffuse interface model include the conservation equations for the mass of each component, the conservation equations for the momentum and total energy of the mixture, the evolution equation for the volume fraction of each component, and the evolution equation for the pressure of the mixture. The important characteristics of the proposed model are simultaneous consideration of mass transfer from the chemical reaction and heat exchange from thermal nonequilibrium and also direct calculation of the pressure from the governing equations. The proposed model owns thermodynamic consistency to effectively eliminate nonphysical oscillations near the material interface. Meanwhile, it can apply to arbitrary expressions of the equation of state, allow for any number of inert materials, and also treat large density ratios across the material interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. W. Fickett and W. C. Davis, Detonation: Theory and Experiment (Dover, New York, 1979).

    Google Scholar 

  2. J. von Neumann and R. D. Richtmyer, “A Method for the Numerical Calculations of Hydrodynamical Shocks," J. Appl. Phys. 21 (3), 232–238 (1950); DOI: 10.1063/1.1699639.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M. L. Wilkins, “Calculation of Elastic–Plastic Flow," in Methods in Computational Physics (Academic Press, New York, 1964), Vol. 3.

  4. D. J. Benson, “Computational Methods in Lagrangian and Eulerian Hydrocodes," Comput. Meth. Appl. Mech. Eng. 99 (2/3), 235–394 (1992); DOI: 10.1016/0045-7825(92)90042-I.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. D. J. Benson, “A Multi-Material Eulerian Formulation for the Efficient Solution of Impact and Penetration Problems," Comput. Mech. 5 (6), 558–571 (1995); DOI: 10.1007/BF00350268.

    Article  ADS  MATH  Google Scholar 

  6. J. Glimm, E. Isaacson, D. Marchesin, and O. McBryan, “Front Tracking for Hyperbolic Systems," Adv. Appl. Math. 2 (1), 91–119 (1981); DOI: 10.1016/0196-8858(81)90040-3.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Tryggvason, B. Bunner, A. Esmaeeli, et al. “A Front-Tracking Method for the Computations of Multiphase Flow," J. Comput. Phys. 169 (2), 708–759 (2001); DOI: 10.1006/jcph.2001.6726.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. C. Hirt and B. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries," J. Comput. Phys. 39 (1), 201–225 (1981); DOI: 10.1016/0021-9991(81)90145-5.

    Article  ADS  MATH  Google Scholar 

  9. R. Saurel and R. Abgrall, “A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows," J. Comput. Phys. 150 (2), 425–467 (1999); DOI: 10.1006/jcph.1999.6187.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. M. Sussman, P. Smereka, and S. Osher, “A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow," J. Comput. Phys. 114 (1), 146–159 (1994); DOI: 10.1006/jcph.1994.1155.

    Article  ADS  MATH  Google Scholar 

  11. T. D. Aslam, J. B. Bdzil, and D. S. Stewart, “Level Set Method Applied to Modeling Detonation Shock Dynamics," Mech. Sci. Eng. 126 (2), 390–409 (1996); DOI: 10.1006/jcph.1996.0145.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. T. Nguyen, “Numerical Methods for Compressible Multi-Phase Flows with Surface Tension," Ph.D. Thesis, University of Trento (April 2017).

  13. L. Michael and N. Nikiforakis, “A Hybrid Formulation for the Numerical Simulation of Condensed Phase Explosives," J. Comput. Phys. 316, 193–217 (2016); DOI: 10.1016/j.jcp.2016.04.017.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. S. Karni, “Multicomponent Flow Calculations by a Consistent Primitive Algorithm," J. Comput. Phys. 112 (1), 31–43 (1994); DOI: 10.1006/jcph.1994.1080.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. V. T. Ton, “Improved Shock-Capturing Methods for Multicomponent and Reacting Flows," J. Comput. Phys. 128 (1), 237–253 (1996); DOI: 10.1006/jcph.1996.0206.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. K. Shyue, “An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems," J. Comput. Phys. 142 (1), 208–242 (1998); DOI: 10.1006/jcph.1998.5930.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. S.-P. Wang, M. H. Anderson, J. Oakley, et al., “A Thermodynamically Consistent and Fully Conservative Treatment of Contact Discontinuities for Compressible Multicomponent Flows," J. Comput. Phys. 195 (2), 528–559 (2004); DOI: 10.1016/j.jcp.2003.10.010.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. J. W. Banks, D. W. Schwendeman, A. K. Kapila, and W. D. Henshaw, “A High-Resolution Godunov Method for Compressible Multi-Material Flow on Overlapping Grids," J. Comput. Phys. 223 (1), 262–297 (2007); DOI: 10.1016/j.jcp.2006.09.014.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. B. J. Lee, E. F. Toro, C. E. Castro, and N. Nikiforakis, “Adaptive Osher-Type Scheme for the Euler Equations with Highly Nonlinear Equations of State," J. Comput. Phys. 246, 165–183 (2013); DOI: 10.1016/j.jcp.2013.03.046.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. M. R. Baer and J. W. Nunziato, “A Two-Phase Mixture Theory for the Deflagration-to-Detonation Transition (DDT) in Reactive Granular Materials," Int. J. Multiphase Flow 12 (6), 861–889 (1986); DOI: 10.1016/0301-9322(86)90033-9.

    Article  MATH  Google Scholar 

  21. A. K. Kapila, R. Menikoff, J. B. Bdzil, and S. F. Son, “Two-Phase Modeling of Deflagration-to-Detonation Transition in Granular Materials: Reduced Equations," Phys. Fluids 13 (10), 3002–3024 (2001); DOI: 10.1063/1.1398042.

    Article  ADS  MATH  Google Scholar 

  22. R. Saurel, F. Petitpas, and R. A. Berry, “Simple and Efficient Relaxation Methods for Interfaces Separating Compressible Fluids, Cavitating Flows and Shocks in Multiphase Mixtures," J. Comput. Phys. 228 (5), 1678–1712 (2009); DOI: 10.1016/j.jcp.2008.11.002.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. R. Saurel and C. Pantano, “Diffuse-Interface Capturing Methods for Compressible Two-Phase Flows," Annu. Rev. Fluid Mech. 50, 105–130 (2018); DOI: 10.1146/annurev-fluid-122316-050109.

    Article  ADS  MathSciNet  Google Scholar 

  24. M. R. Baer and M. E. Kipp, “Micromechanical Modeling of Heterogeneous Energetic Materials," in Proc. of the 11th Int. Detonation Symp., Snowmass, 1998, pp. 788–797.

  25. C. A. Handley, B. D. Lambourn, N. J. Whitworth, et al., “Understanding the Shock and Detonation Response of High Explosives at the Continuum and Meso Scales," Appl. Phys. Rev. 5, 011303 (2018); DOI: 10.1063/1.5005997.

    Article  ADS  Google Scholar 

  26. F. Zhang, Shock Wave Science and Technology Reference Library. Detonation Dynamics (Springer-Verlag, Berlin–Heidelberg, 2012), Vol. 6.

    Google Scholar 

  27. F. Findik, “Recent Developments in Explosive Welding," Mater. Des. 32 (3), 1081–1093 (2011); DOI: 10.1016/j.matdes.2010.10.017.

    Article  Google Scholar 

  28. J. W. Grove, “Some Comments on Thermodynamic Consistency for Equilibrium Mixture Equations of State," Comput. Math. Appl. 78 (2), 582–597 (2019); DOI: 10.1016/j.camwa.2018.03.012.

    Article  MathSciNet  MATH  Google Scholar 

  29. E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer-Verlag, Berlin–Heidelberg, 1999).

    Book  Google Scholar 

  30. X.-L. Zhong, “Additive Semi-Implicit Runge–Kutta Methods for Computing High-Speed Nonequilibrium Reactive Flows," J. Comput. Phys. 128 (1), 19–31 (1996); DOI: 10.1006/jcph.1996.0193.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J. Castor, Radiation Hydrodynamics (Cambridge Univ. Press, 2004).

    Book  Google Scholar 

  32. R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems (Cambridge Univ. Press, 2004).

    Google Scholar 

  33. C. M. Tarver and E. M. McGuire, “Reactive Flow Modeling of the Interaction of TATB Detonation Waves with Inert Materials," in The 12th Symp. (Int.) on Detonation, San Diego, 2002, pp. 641–649.

  34. S. P. Marsh, LASL Shock Hugoniot Data (Univ. of California Press, Berkeley, 1980).

    Google Scholar 

  35. K.-M. Shyue, “A Fluid-Mixture Type Algorithm for Compressible Multicomponent Flow with Mie–Grüneisen Equation of State," J. Comput. Phys. 171 (2), 678–707 (2001); DOI: 10.1006/jcph.2001.6801.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. R. L. Gustavsen, S. A. Sheffield, and R. R. Alcon, “Measurements of Shock Initiation in the Tri-Amino-Tri-Nitro-Benzene Based Explosive PBX 9502: Wave Forms from Embedded Gauges and Comparison of Four Different Material Lots," J. Appl. Phys. 99 (11), 114907 (2006); DOI: 10.1063/1.2195191.

    Article  ADS  Google Scholar 

  37. M. Short and J. J. Quirk, “High Explosive Detonation–Confiner Interactions," Annu. Rev. Fluid Mech. 50, 215–242 (2018); DOI: 10.1146/annurev-fluid-122316-045011.

    Article  ADS  MathSciNet  Google Scholar 

  38. S. Schoch, N. Nikiforakis, and B. J. Lee, “The Propagation of Detonation Waves in Non-Ideal Condensed-Phase Explosives Confined by High Sound-Speed Materials," Phys. Fluids 25 (8), 086102 (2013); DOI: 10.1063/1.4817069.

    Article  ADS  Google Scholar 

  39. S. Schoch, K. Nordin-Bates, and N. Nikiforakis, “A Eulerian Algorithm for Coupled Simulation of Elastoplastic–Solids and Condensed-Phase Explosives," J. Comput. Phys. 252 (9), 163–194 (2013); DOI: 10.1016/j.jcp.2013.06.020.

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 1, pp. 86-103.https://doi.org/10.15372/FGV20220109.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Ma, ZB. Thermodynamically Consistent Diffuse Interface Model for the Numerical Simulation of Interaction between Solid Explosive Detonation and Inert Materials. Combust Explos Shock Waves 58, 77–92 (2022). https://doi.org/10.1134/S0010508222010099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222010099

Keywords

Navigation