Skip to main content
Log in

Numerical Study of Laminar Flame Propagation in CH4–N2O–N2 at Moderate Pressures and Temperatures

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The laminar burning velocities of a stoichiometric CH4–N2O mixture diluted with N2 [30–60% (by volume)] at various initial pressures (1–10 bar) and various initial temperatures (273.15–423 K) are obtained by numerical modelling of their premixed adiabatic flames. The modelling is performed with the Cosilab package using the GRI-Mech 3.0 mechanism based on 53 chemical species and 325 elementary reactions. The calculated laminar burning velocities are compared with available literature data. The influence of the initial conditions (pressure, temperature, and N2 concentration) of CH4–N2O–N2 mixtures on the laminar burning velocities, maximum flame temperature, heat release rate, and peak concentrations of the main reaction intermediates is investigated and discussed. Using the correlations of the laminar burning velocities with the initial pressure and the average flame temperature, the overall activation parameters of CH4–N2O oxidation are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. G. E. Andrews and D. Bradley, “Determination of Burning Velocities: A Critical Review," Combust. Flame 18 (1), 133–153 (1972); DOI: 10.1016/S0010-2180(72)80234-7.

    Article  Google Scholar 

  2. S. C. Taylor, “Burning Velocity and the Influence of Flame Stretch," Ph.D. Thesis (Univ. of Leeds., England, 1991).

  3. J. Warnatz, U. Maas, and R. W. Dibble, Combustion (Springer-Verlad, Berlin–Heidelberg–New York, 2001).

    Book  Google Scholar 

  4. J. Andersen, C. L. Rasmussen, T. Giselsson, and P. Glarborg, “Global Combustion Mechanisms for Use in CFD Modeling under Oxy-Fuel Conditions," Energy Fuels 23 (3), 1379–1389 (2009); DOI: 10.1021/ef8003619.

    Article  Google Scholar 

  5. S. Rousseau, B. Lemoult, and M. Tazerout, “Combustion Characterization of Natural Gas in a Lean Burn Spark-Ignition Engine," Proc. Inst. Mech. Eng. D 213 (5), 481–489 (1999); DOI: 10.1243/0954407991527044.

    Article  Google Scholar 

  6. L. Ben, N. Raud-Ducros, R. Truquet, and G. Charnay, “Influence of Air/Fuel Ratio on Cyclic Variation and Exhaust Emission in Natural Gas SI Engine," SAE Tech. Paper 1999-01-2901 (1999); DOI: 10.4271/1999-01-2901.

  7. C. Merrill, “Nitrous Oxide Explosive Hazards," in Defense Explosives Safety Seminar, Palm Springs, 2008, p. 38.

  8. J. S. Tyll and R. Herdy, “The Nitrous Oxide–Propane Rocket Engine," Report No. GSL-TR-387 (Microcraft Inc., Huntsville, 2001).

  9. V. Zakirov, M. Sweeting, T. Lawrence, and J. Sellers, “Nitrous Oxide As a Rocket Propellant," Acta Astronaut. 48 (5–12), 353–362 (2001); DOI: 10.1016/S0094-5765(01)00047-9.

    Article  ADS  Google Scholar 

  10. K. Severin, “Synthetic Chemistry with Nitrous Oxide," Chem. Soc. Rev. 44, 6375–6386 (2015); DOI: 10.1039/C5CS00339C.

    Article  Google Scholar 

  11. Y. Koshiba, T. Takigawa, Y. Matsuoka, and H. Ohtani, “Explosion Characteristics of Flammable Organic Vapors in Nitrous Oxide Atmosphere," J. Hazard. Mater. 183 (1–3), 746–753 (2010); DOI: 10.1016/j.jhazmat.2010.07.089.

    Article  Google Scholar 

  12. Y. Koshiba, T. Nishida, N. Morita, and H. Ohtani, “Explosion Behavior of n-Alkane/Nitrous Oxide Mixtures," Process Saf. Environ. Prot. 98, 11–15 (2015); DOI: 10.1016/j.psep.2015.06.005.

    Article  Google Scholar 

  13. T. Meye, E. Brandes, M. Hoding, and S. Busse, “Safety Characteristics at Non-Atmospheric Conditions-Oxidizers Other than Air," in Proc. 9th Int. Symp. Hazard. Prev. Mitigation Ind. Explos., Cracow, Poland, 2012.

  14. U. J. Pfahl, M. C. Ross, J. E. Shepherd, et al., “Flammability Limits, Ignition Energy, and Flame Speeds in H2–CH4–NH3–N2O–O2–N2 Mixtures," Combust. Flame 123 (1/2), 140–158 (2000); DOI: 10.1016/S0010-2180(00)00152-8.

    Article  Google Scholar 

  15. A. Yu. Shebeko, Yu. N. Shebeko, A. V. Zuban, and V. Yu. Navzenya, “An Experimental Investigation of an Inertization Effectiveness of Fluorinated Hydrocarbons in Relation to Premixed H2–N2O and CH4–N2O Flames," J. Loss Prev. Process Ind. 26 (6), 1639–1645 (2013); DOI: 10.1016/j.jlp.2013.07.010.

    Article  Google Scholar 

  16. A. Yu. Shebeko, Yu. N. Shebeko, A. V. Zuban, et al., “Influence of Fluorocarbons Flammability Limits in the Mixtures of H2–N2O and CH4–N2O," Khim. Fiz. 33 (1), 37–43 (2014) [Russ. J. Phys. Chem. B 8 (1), 65–70 (2014); DOI: 10.7868/S0207401X14010105].

    Article  Google Scholar 

  17. D. Razus, M. Mitu, V. Giurcan, and D. Oancea, “Propagation Indices of Methane–Nitrous Oxide Flames in the Presence of Inert Additives," J. Loss Prev. Process Ind. 49 (Pt. B), 418–426 (2017); DOI: 10.1016/j.jlp.2017.08.010.

    Article  Google Scholar 

  18. C. Movileanu, M. Mitu, D. Razus, et al., “Propagation Indexes of C2H4–N2O–N2 Deflagrations in Elongated Closed Vessels," Rev. Roumaine Chim. 62 (4/5), 357–363 (2017).

    Google Scholar 

  19. L.-Q. Wang, H.-H. Ma, and Z.-W. Shen, “Explosion Characteristics of H2/N2O and CH4/N2O Diluted with N2," Fuel 260, 116355 (2020); DOI: 10.1016/j.fuel.2019.116355.

    Article  Google Scholar 

  20. W. Parker and H. Wolfhard, “Some Characteristics of Flames Supported by NO and NO2," Symp. (Int.) Combust. 4 (1), 420–428 (1953); DOI: 10.1016/S0082-0784(53)80058-5.

    Article  Google Scholar 

  21. W. R. Anderson, L. J. Decker, and A. J. Kotlar, “Concentration Profiles of NH and OH in a Stoichiometric CH4/N2O Flame by Laser Excited Fluorescence and Absorption," Combust. Flame 48, 179–190 (1982); DOI: 10.1016/0010-2180(82)90126-2.

    Article  Google Scholar 

  22. J. A. Vanderhoff, R. A. Beyer, and A. J. Kotlar, “Laser Raman Spectroscopy of Flames; Temperature and Concentrations in CH4/N2O Flames," Tech. Report No. ARBRL-TR-02388, USAARDC (1982).

  23. M. B. Habeebullah, F. N. Alasfour, and M. C. Branch, “Structure and Kinetics of CH4/N2O Flames," Symp. (Int.) Combust. 23 (1), 371–378 (1991); DOI: 10.1016/S0082-0784(06)80281-X.

    Article  Google Scholar 

  24. J. Vandooren, M. C. Branch, and P. J. van Tiggelen, “Comparisons of the Structure of Stoichiometric CH4–N2O–Ar and CH4–O2–Ar Flames by Molecular Beam Sampling and Mass Spectrometric Analysis," Combust. Flame 90 (3/4), 247–258 (1992); DOI: 10.1016/0010-2180(92)90086-5.

    Article  Google Scholar 

  25. S. Zabarnick, “A Comparison of CH4/NO/O2 and CH4/N2O Flames by LIF Diagnostics and Chemical Kinetic Modeling," Combust. Sci. Technol. 83 (1–3), 115–134 (1992); DOI: 10.1080/00102209208951826.

    Article  Google Scholar 

  26. M. C. Branch, J. W. Daily, S. Mahalingam, and G. J. Fiechtner, “Fundamental Studies of Rocket Combustion Chemistry and Combustion Instability," CCR Report No. 93-01 (Center for Combustion Res. Univ. Colorado, Boulder, 1993).

  27. J. J. Cor, C. B. Dreyer, and M. C. Branch, “Mechanistic Studies of Low-Pressure Flames Supported by Nitrogen Oxides," Int. J. Energ. Mater. Chem. Propul. 4 (1–6), 70–80 (1997); DOI: 10.1615/IntJEnergeticMaterialsChemProp.v4.i1-6.90.

    Article  Google Scholar 

  28. O. A. Powell, P. Papas, and C. Dreyer, “Laminar Burning Velocities for Hydrogen–, Methane–, Acetylene–, and Propane–Nitrous Oxide Flames," Combust. Sci. Technol. 181 (7), 917–936 (2009); DOI: 10.1080/00102200902817066.

    Article  Google Scholar 

  29. O. A. Powell, P. Papas, and C. B. Dreyer, “Hydrogen– and C1–C3 Hydrocarbon–Nitrous Oxide Kinetics in Freely Propagating and Burner-Stabilized Flames, Shock Tubes, and Flow Reactors," Combust. Sci. Technol. 182 (3), 252–283 (2010); DOI: 10.1080/00102200903357724.

    Article  Google Scholar 

  30. R. Mével, S. Javoy, F. Lafosse, et al., “Hydrogen–Nitrous Oxide Delay Times: Shock Tube Experimental Study and Kinetic Modelling," Proc. Combust. Inst. 32 (1), 359–366 (2009); DOI: 10.1016/j.proci.2008.06.171.

    Article  Google Scholar 

  31. S. P. M. Bane, R. Mével, S. A. Coronel, and J. E. Shepherd, “Flame Burning Speeds and Combustion Characteristics of Undiluted and Nitrogen-Diluted Hydrogen–Nitrous Oxide Mixtures," Int. J. Hydrogen Energy 36 (16), 10107–10116 (2011); DOI: 10.1016/j.ijhydene.2011.04.232.

    Article  Google Scholar 

  32. P. Bangalore Venkatesh, J. D’Entremont, S. E. Meyer, et al., “High-Pressure Combustion and Deflagration-to-Detonation Transition in Ethylene/Nitrous Oxide Mixtures," in 8th US National Combustion Meeting, 2013, Paper No. 070DE-0158.

  33. A. van Tiggelen, R. Burke, and J. D’Olieslager, “Reaction Kinetics in Flames," AFOSR Tech. Report No. 401390 (1963), p. 34.

  34. J. D’Olieslager and A. van Tiggelen, “Kinetical Study of Hydrocarbon–Nitous Oxide Flames," Bull. Soc. Chim. Belg. 73 (3/4), 135–153 (1964); DOI: 10.1002/bscb.19640730302.

    Article  Google Scholar 

  35. D. Razus, M. Mitu, V. Giurcan, et al., “Methane-Unconventional Oxidant Flames. Laminar Burning Velocities of Nitrogen-Diluted Methane–N2O Mixtures," Process Saf. Environ. Prot. 114, 240–250 (2018); DOI: doi.org/10.1016/j.psep.2017.12.026.

    Article  Google Scholar 

  36. L. Xiang, W. Dong, J. Hu, et al., “Numerical Study on CH4 Laminar Premixed Flames for Combustion Characteristics in the Oxidant Atmospheres of N2/CO2/H2O/Ar–O2," J. Energy Inst. 93 (4), 1278–1287 (2020); DOI: 10.1016/j.joei.2019.11.011.

    Article  Google Scholar 

  37. COSILAB. Version 3.0.3 (Rotexo-Softpredict GmbH & Co KG, Bad Zwischenhahn, 2013).

  38. M. Metghalchi and J. C. Keck, “Laminar Burning Velocity of Propane–Air Mixtures at High Temperature and Pressure," Combust. Flame 38 (1), 143–154 (1980); DOI: 10.1016/0010-2180(80)90046-2.

    Article  Google Scholar 

  39. A. E. Dahoe and L. P. H. de Goey, “On the Determination of the Laminar Burning Velocity from Closed Vessel Gas Explosions," J. Loss Prev. Process Ind. 16 (6), 457–478 (2003); DOI: 10.1016/S0950-4230(03)00073-1.

    Article  Google Scholar 

  40. M. Mitu, D. Razus, V. Giurcan, and D. Oancea, “Normal Burning Velocity and Propagation Speed of Ethane–Air: Pressure and Temperature Dependence," Fuel 147, 27–34 (2015); DOI: 10.1016/j.fuel.2015.01.026.

    Article  Google Scholar 

  41. P. G. Hill and J. Hung, “Laminar Burning Velocities of Stoichiometric Mixtures of Methane with Propane and Ethane Additives," Combust. Sci. Technol. 60 (1–3), 7–30 (1988); DOI: 10.1080/00102208808923973.

    Article  Google Scholar 

  42. M. I. Hassan, K. T. Aung, O. K. Kwon, and G. M. Faeth, “Properties of Laminar Premixed Hydrocarbon/Air Flames at Various Pressures," J. Propul. Power 14 (4), 479–488 (1998); DOI: 10.2514/2.5304.

    Article  Google Scholar 

  43. X. J. Gu, M. Z. Haq, M. Lawes, and R. Woolley, “Laminar Burning Velocity and Markstein Lengths of Methane–Air Mixtures," Combust. Flame 121 (1/2), 41–58 (2000); DOI: 10.1016/S0010-2180(99)00142-X.

    Article  Google Scholar 

  44. S. Y. Liao, D. M. Jiang, and Q. Cheng, “Determination of Laminar Burning Velocities for Natural Gas," Fuel 83 (9), 1247–1250 (2004); DOI: 10.1016/j.fuel.2003.12.001.

    Article  Google Scholar 

  45. J. Warnatz, “Concentration-, Pressure-, and Temperature-Dependence of the Flame Velocity in Hydrogen–Oxygen–Nitrogen Mixtures," Combust. Sci. Technol. 26 (5/6), 203–213 (1981); DOI: 10.1080/00102208108946961.

    Article  Google Scholar 

  46. F. Behrendt and J. Warnatz, “The Dependence of Flame Propagation in H2–O2–N2 Mixtures on Temperature, Pressure, and Initial Composition," Int. J. Hydrogen Energy 10 (11), 749–755 (1985); DOI: 10.1016/0360-3199(85)90111-9.

    Article  Google Scholar 

  47. F. N. Egolfopoulos, D. L. Zhu, and C. K. Law, “Experimental and Numerical Determination of Laminar Flame Speeds: Mixtures of C2-Hydrocarbons with Oxygen and Nitrogen," Symp. (Int.) Combust. 23 (1), 471–478 (1991); DOI: 10.1016/S0082-0784(06)80293-6.

    Article  Google Scholar 

  48. D. Razus, M. Mitu, V. Giurcan, et al., “Numerical Study of Pressure and Composition Influence on Laminar Flame Propagation in Nitrogen-Diluted H2–O2 Mixtures," Rev. Roumaine Chim. 65 (6), 529–537 (2020); DOI: 10.33224/rrch.2020.65.6.02.

    Article  Google Scholar 

  49. Yu. N. Shebeko, S. G. Tsarichenko, A. Ya. Korolchenko, et al., “Burning Velocities and Flammability Limits of Gaseous Mixtures at Elevated Temperatures and Pressures," Combust. Flame 102 (4), 427–437 (1995); DOI: 10.1016/0010-2180(95)00002-N.

    Article  Google Scholar 

  50. G. Dayma, F. Halter, and P. Dagaut, “New Insights into the Peculiar Behavior of Laminar Burning Velocities of Hydrogen–Air Flames According to Pressure and Equivalence Ratio," Combust. Flame 161 (9), 2235–2241 (2014); DOI: 10.1016/j.combustflame.2014.02.009.

    Article  Google Scholar 

  51. X. Lu, E. Hu, X. Li, et al., “Non-Monotonic Behaviors of Laminar Burning Velocities of H2/O2/He Mixtures at Elevated Pressures and Temperatures," Int. J. Hydrogen Energy 42 (34), 22036–22045 (2017); DOI: 10.1016/j.ijhydene.2017.07.055.

    Article  Google Scholar 

  52. P. Han, M. D. Checkel, B. A. Fleck, and N. L. Nowicki, “Burning Velocity of Methane/Diluent Mixture with Reformer Gas Addition," Fuel 86 (4), 585–596 (2007); DOI: 10.1016/j.fuel.2006.08.011.

    Article  Google Scholar 

  53. A. S. Huzayyin, H. A. Moneib, M. S. Shehatta, and A. M. A. Attia, “Laminar Burning Velocity and Explosion Index of LPG–Air and Propane–Air Mixtures," Fuel 87 (1), 39–57 (2008); DOI: 10.1016/j.fuel.2007.04.001.

    Article  Google Scholar 

  54. M. Mitu, V. Giurcan, D. Razus, and D. Oancea, “Inert Gas Influence on the Laminar Burning Velocity of Methane–Air Mixtures," J. Hazard. Mater. 321, 440–448 (2017); DOI: 10.1016/j.jhazmat.2016.09.033.

    Article  Google Scholar 

  55. C. K. Law, Combustion Physics (Cambridge Univ. Press, New York, 2006).

    Book  Google Scholar 

  56. I. Glassman and R. Yetter, Combustion (Elsevier, Amsterdam–Boston–London, 2008).

    Google Scholar 

  57. B. A. Williams and J. W. Fleming, “Comparative Species Concentrations in CH4/O2/Ar Flames Doped with N2O, NO, and NO2," Combust. Flame 98 (1/2), 93–106 (1994); DOI: 10.1016/0010-2180(94)90200-3.

    Article  Google Scholar 

  58. A. A. Konnov and I. V. Dyakov, “Nitrous Oxide Conversion in Laminar Premixed Flames of CH4 + O2 + Ar," Proc. Combust. Inst. 32 (1), 319–326 (2009); DOI: 10.1016/j.proci.2008.07.020.

    Article  Google Scholar 

  59. O. Mathieu, J. M. Pemelton, G. Bourque, and E. L. Petersen, “Shock-Induced Ignition of Methane Sensitized by NO2 and N2O," Combust. Flame 162 (8), 3053–3070 (2015); DOI: 10.1016/j.combustflame.2015.03.024.

    Article  Google Scholar 

  60. R. Burke, F. Dewael, and A. van Tiggelen, “Kinetics of the Propylene–Oxygen Flame Reaction," Combust. Flame 7, 83–87 (1963); DOI: 10.1016/0010-2180(63)90158-5.

    Article  Google Scholar 

  61. J. U. Steinle and E. U. Franck, “High Pressure Combustion-Ignition Temperatures to 1000 bar," Ber. Bunsenges. Phys. Chem. 99 (1), 66–73 (1995); DOI: 10.1002/bbpc.19950990110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mitu.

Additional information

Translated from Fizika Goreniya i Vzryva, 2022, Vol. 58, No. 1, pp. 27-39.https://doi.org/10.15372/FGV20220103.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giurcan, V., Mitu, M., Movileanu, C. et al. Numerical Study of Laminar Flame Propagation in CH4–N2O–N2 at Moderate Pressures and Temperatures. Combust Explos Shock Waves 58, 22–33 (2022). https://doi.org/10.1134/S0010508222010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508222010038

Keywords

Navigation