Skip to main content
Log in

Ignition of Rotating Samples of High-Energy Materials by Laser Radiation

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the method and results of an experimental study of the ignition characteristics of samples of high-energy materials by multimode laser radiation. A uniform distribution of the radiation flux density over the end surface of a cylindrical sample is obtained by its rotation around the axis of symmetry with a given angular velocity of rotation. The effect of convective heat transfer of the end surface of the sample with the environment on ignition characteristics is eliminated by placing the sample in a cylindrical container. The results of experiments on ignition of pyroxylin samples by a CO2laser with and without rotation of the sample are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. B. N. Kondrikov, T. J. Ohlemiller, and M. Summerfield, “Ignition and Gasification of a Double-Base Propellant Induced by CO2Laser Radiation," Probl. Teor. Vzr. Veshchestv: Tr. MKhTI, No. 83, 67–78 (1974).

  2. L. G. Strakovskii and E. I. Frolov, “Properties of the Ignition of Semitransparent Volatile Explosives by a Monochromatic Light Flux," Fiz. Goreniya Vzryva 16 (5), 140–147 (1980) [Combust., Expl., Shock Waves 16 (5), 598–604 (1980); doi.org/10.1007/BF00794940].

  3. F. Maggi, A. Bandera, L. Galfetti, L. T. de Luca, and T. L. Jackson, “Efficient Solid Rocket Propulsion for Access to Space," Acta Astronaut. 66, 1563–1573 (2010).

  4. R. Akhmetshin et al., “Effect of Laser Radiation Wavelength on Explosives Initiation Thresholds," J. Phys.: Conf. Ser.552 (1), 012015 (2014).

  5. A. G. Korotkikh, V. A. Arkhipov, K. V. Slyusarsky, and I. V. Sorokin, “Study of Ignition of High-Energy Materials with Boron and Aluminum and Titanium Diborides," Fiz. Goreniya Vzryva54 (3), 109–115 (2018); https://doi.10.15372/FGV20180312 [Combust., Expl., Shock Waves 54 (3), 350–356 (2018); https://doi.org/10.1134/S0010508218030127].

  6. L. V. Bachurin, V. I. Kolesov, A. N. Konovalov, V. A. Ul’yanov, and N. V. Yudin, “Heating of Energetic Materials by Continuous-Wave near IR Laser Radiation," Fiz. Goreniya Vzryva 54 (4), 84–95 (2018); https://doi.10.15372/FGV20180410 [Combust., Expl., Shock Waves 54 (4), 461–471 (2018); https://doi.org/10.1134/S001050821804010X].

  7. Yu. V. Sheikov, S. M. Bat’yanov, O. N. Kalashnikova, O. M. Lukovkin, D. V. Mil’chenko, S. A. Vakhmistrov, and A. L. Mikhailov, “Initiating Aluminized High Explosives by Laser Radiation," Fiz. Goreniya Vzryva 54 (5), 57–64 (2018); https://doi. 10.15372/FGV20180508 [Combust., Expl., Shock Waves 54 (5), 563–569 (2018); https://doi.org/10.1134/S0010508218050088].

  8. M. E. Zhabotinskii, Quantum Electronics. Little Encyclopedia (Sov. Entsikl., Moscow, 1969) [in Russian].

  9. V. N. Vilyunov, Theory of Ignition of Condensed Substances (Nauka, Novosibirsk, 1984) [in Russian].

  10. V. A. Arkhipov, V. D. Goldin, N. N. Zolotorev, A. G. Korotkikh, V. T. Kuznetsov, and O. B. Matvienko, “New Method of Condensed Systems Ignition by Laser Radiation," in Gas Discharge Plasmas and Their Applications, 14th Int. Conf. GDP-2019 (TPU Publ. House, Tomsk, 2019), p. 70.

  11. A. V. Lykov, Heat and Mass Transfer: Handbook(Energiya, Moscow, 1978) [in Russian].

  12. H. S. Carslow and J. C. Jaeger, Conduction of Heat in Solids (Clarendon Press, 1960).

  13. V. N. Vilyunov, V. T. Kuznetsov, and A. I. Skorik, “Ignition of Pyroxylin by High Intensity Light Flux," in Combustion and Explosion (Nauka, Moscow 1977), pp. 278–281 [in Russian].

  14. I. V. Shevchuk, “Effect of Wall Temperature on Laminar Heat Transfer in a Rotating Disk: An Approximate Analytical Solution," Teplofiz. Vysok. Temp. 39 (4), 682–685 (2001).

  15. N. B. Vargaftik, Handbook on Thermophysical Properties of Gases and Liquids (Nauka, Moscow, 1972) [in Russian].

  16. A. K. Gupta, D. G. Lilly, and N. Cyred, Swirl Flows (Abacus Press, Kent, 1987).

  17. O. V. Matvienko, “Heat Transfer and Formation of Turbulence in an Internal Swirling Fluid Flow at Low Reynolds Numbers," Inzh.-Fiz. Zh. 87 (4), 908–918 (2014) [J. Eng. Phys. Thermophy87 (4), 940–950 (2014); https://doi.org/10.1007/s10891-014-1092-3].

  18. B. V. Novozhilov, Unsteady Combustion of Solid Rocket Propellants (Nauka, Moscow, 1973) [in Russian].

  19. Ya. B. Zel’dovich, O. I. Leipunskii, and V. B. Librovich,Theory of Unsteady Combustion of Gunpowder (Nauka, Moscow, 1975) [in Russian].

  20. G. S. Samoilovich, Hydrogasdynamics(Mashinostroenie, Moscow, 1990) [in Russian].

  21. V. I. Lisitskii and K. V. Pribytkova, “Ignition of Condensed Substances in the Presence of a Phase Transition in the Heated Layer," Fiz. Goreniya Vzryva 54 (4), 501–512 (1968) [Combust., Expl., Shock Waves 54 (4), 287–294 (1968); https://doi.org/10.1007/BF00742567].

  22. V. F. Mikheev and S. S. Khlevnoi, “Pyroxylin Ignition," Fiz. Goreniya Vzryva 6 (2), 176–181 (1970) [Combust., Expl., Shock Waves 6 (2), 158–162 (1970); https://doi.org/10.1007/BF00742922].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Arkhipov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, V.A., Zolotorev, N.N., Korotkikh, A.G. et al. Ignition of Rotating Samples of High-Energy Materials by Laser Radiation. Combust Explos Shock Waves 57, 83–90 (2021). https://doi.org/10.1134/S001050822101010X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050822101010X

Keywords

Navigation