Skip to main content
Log in

Effects of Various Compositions of the Fuel—Air Mixture on the Pulse Detonation Engine Performance

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The objective of the present analysis is to investigate the effect of gaseous hydrocarbon fuels, such as Octane C8H18, Hexane C6H14, and Pentane C5H12 on the cyclic combustion process in an obstructed channel of the pulse detonation engine. Three-dimensional reactive Navier-Stokes equations are used to simulate the combustion mechanism of stoichiometric hydrocarbon fuels along with a one-step reaction model. The fuel is injected at atmospheric pressure and temperature and is ignited with pre-heated air. The investigation shows that initially a high-temperature combustion wave propagates with the local speed of sound; it creates turbulence after colliding with obstacles, resulting in an increase to supersonic flame speeds. Therefore, different values of the combustion flame propagation speed, combustion efficiency and impulse per unit area are obtained for these fuels. The detonation speed in the hexane-air mixture is about 5.8% lower than the detonation speed predicted by the NASA CEA400 code. However, it is observed that the octane fuel reduces the deflagration-to-detonation transition run-up distance as compared to other fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. G. Phylippov, V. R. Dushin, V. F. Nikitin, et al., “Fluid Mechanics of Pulse Detonation Thrusters,” Acta Astronaut 76, 115–126 (2012).

    Article  ADS  Google Scholar 

  2. N. N. Smirnov, V. B. Betelin, V. F. Nikitin, et al., “Detonation Engine Fed by Acetylene-Oxygen Mixture,” Acta Astronaut 104, 134–146 (2014).

    Article  ADS  Google Scholar 

  3. N. N. Smirnov and V. F. Nikitin, “Modeling and Simulation of Hydrogen Combustion in Engines,” Int. J. Hydrogen Energy 39 (2), 1122–1136 (2014).

    Article  Google Scholar 

  4. N. N. Smirnov, V. B. Betelin, R. M. Shagaliev, et al., “Hydrogen Fuel Rocket Engines Simulation Using LOGOS Code,” Int. J. Hydrogen Energy 39, 10748–10756 (2014).

    Article  Google Scholar 

  5. W. Lu, W. Fan, K. Wang, et al., “Operation of a Liquid-Fueled and Valveless Pulse Detonation Rocket Engine at High Frequency,” Proc. Combust. Inst 36, 2657–2664 (2017).

    Article  Google Scholar 

  6. J. Hoke and R. Bradley, “Impact of DDT Mechanism, Combustion Wave Speed, Temperature, and Charge Quality on Pulsed-Detonation Engine Performance,” in Proc. 43rd AIAA Aerospace Sciences Meeting and Exhibit. (2005), p. 1342.

    Google Scholar 

  7. K. Rouser, P. King, F. Schauer, et al., “Experimental Performance Evaluation of a Turbine Driven by Pulsed Detonations,” in Proc. 51st Aerospace Sciences Meeting (2013), p. 1212.

    Google Scholar 

  8. E. Mallard and H. L. Le Chatelier, “Sur la Vitesse de Propagation de L'innammation Dans les Melanges Gazeux Explosifs,” Compt. Rend. Acad. Sci. Paris 93, 145–148 (1881).

    Google Scholar 

  9. M. Berthelot and P. Vieille, “Sur la Vitesse de Propagation des Phenomenes Explosifs Dans les Gaz,” Compt. Rend. Acad. Sci. Paris 93, 18–22 (1881).

    Google Scholar 

  10. V. A. Mikhelson, “On the Normal Velocity of Ignition of Explosive Gas Mixtures,” Uch. Zap. Imper. Mosk. Univ., Otd. Fiz.-Mat 10, 1–92 (1893).

    Google Scholar 

  11. D. L. Chapman, “On the Role of Explosion in Gases,” Philos. Mag 47, 90 (1899).

    Article  Google Scholar 

  12. E. Jouguet, “On the Propagation of Chemical Reactions in Gases,” J. Math 1, 347 (1905).

    MATH  Google Scholar 

  13. A. C. Egerton, O. A. Saunders, A. H. Lefebvre, and N. P. W. Moore, “Some Observations by Schlieren Technique of the Propagation of Flame in a Closed Vessel,” in Proc. 4th Symp. (Int.) on Combustion (Williams and Wilkins, Baltimore, 1953). pp. 396–402.

    Google Scholar 

  14. A. K. Oppenheim and R. A. Stern, “On the Development of Gaseous Detonation e Analysis of Wave Phenomena,” in Proc. 7th Symp. (Int.) on Combustion (Butterworths, London, 1959). pp. 837–850.

    Google Scholar 

  15. G. D. Salamandra, T. V. Bezhenova, and I. M. Naboko, “Formation of Detonation Wave during Combustion of Gas in Combustion Tube,” in Proc. 7th Symp. (Int.) on Combustion (Butterworths, London, 1959), pp. 851–855.

    Google Scholar 

  16. V. A. Popov, “On the Pre-Detonation Period of Flame Propagation,” in Proc. 7th Symp. (Int.) on Combustion (Butterworths, London, 1959), pp. 799–806.

    Google Scholar 

  17. P. A. Urtiew and A. K. Oppenheim, “Experimental Observations of the Transition to Detonation in an Explosive Gas,” Proc. Roy. Soc. A 295, 13–28 (1966).

    Article  ADS  Google Scholar 

  18. J. H. Lee, “Dynamic Parameters of Gaseous Detonations,” Ann. Rev. Fluid Mech 16, 311–336 (1984).

    Article  ADS  Google Scholar 

  19. G. Ciccarelli, C. Johansen, and M. Parravani, “The Role of Shock-Flame Interactions on Flame Acceleration in an Obstacle Laden Channel,” Combust. Flame 157 (11), 2125–2136 (2010).

    Article  Google Scholar 

  20. O. Peraldi, R. Knystautas, and J. H. S. Lee, “Criteria for Transition to Detonation in Tubes,” Proc. Combust. Inst 21, 1629–1637 (1986).

    Article  Google Scholar 

  21. M. Kellenberger and G. Ciccarelli, “Propagation Mechanisms of Supersonic Combustion Waves,” Proc. Combust. Inst 35, 2109–2116 (2015).

    Article  Google Scholar 

  22. A. Teodorczyk, J. H. Lee, and R. Knystautas, “Propagation Mechanism of Quasi-Detonations,” Proc. Combust. Inst 22, 1723–1731 (1988).

    Article  Google Scholar 

  23. T. Heifrich, F. Schauer, R. Bradley, and J. Hoke, “Ignition and Detonation Characteristics of Hydrogen and Hydrocarbon Fuels in a PDE,” AFRL-RZ-WP-TP-2007-243 (1988).

    Google Scholar 

  24. N. N. Smirnov, V. F. Nikitin, V. R. Dushin, et al., “Combustion Onset in Non-Uniform Dispersed Mixtures,” Acta Astronaut 115, 94–101 (2015).

    Article  Google Scholar 

  25. M. Kuznetsov, G. Ciccarelli, S. Dorofeev, et al, “DDT in Methane-Air Mixtures,” Shock Waves 12, 215–220 (2002).

    Article  ADS  Google Scholar 

  26. A. V. Gaathaug, K. Vaagsaether, and D. Bjerketvedt, “Experimental and Numerical Investigation of DDT in Hydrogen-Air Behind a Single Obstacle,” Int. J. Hydrogen Energy 37, 17606–17615 (2012).

    Article  Google Scholar 

  27. F. Gnani, H. Zare-Behtash, C. White, and K. Kontis, “Effect of Back-Pressure Forcing on Shock Train Structures in Rectangular Channels,” Acta Astronaut 145, 471–481 (2018).

    Article  ADS  Google Scholar 

  28. N. Alam, K. K. Sharma, and K. M. Pandey, “Numerical Investigation of Combustion Phenomena in Pulse Detonation Engine with Different Fuels,” AIP Conf. Proc, 020015 (1966).

    Google Scholar 

  29. E. Dzieminska and A. K. Hayashi, “Auto-Ignition and DDT Driven by Shock Wave-Boundary Layer Interaction in Oxyhydrogen Mixture,” Int. J. Hydrogen Energy 38, 4185–4193 (2013).

    Article  Google Scholar 

  30. J. Warnatz, U. Maas, and R. W. Dibble, Combustion: Physical and Chemical Fundamentals, Modeling and Simulations, Experiments, Pollutant Formation (Springer, Berlin-Heidelberg, 2001).

    Book  Google Scholar 

  31. J. O. Hirschfelder, C. F. Gurtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

    Google Scholar 

  32. H. Wei, Y. Shang, C. Chen, et al., “One Dimensional Numerical Study on Pressure Wave-Flame Interaction and Flame Acceleration under Engine-Relevant Conditions,” Int. J. Hydrogen Energy 40, 4874–4883 (2015).

    Article  Google Scholar 

  33. https://www.encyclopediaofmath.org/index.php/Accu-mulation_of_errors.

  34. B. Kehlet and A. Logg, “A Posteriori Error Analysis of Round-off Errors in the Numerical Solution of Ordinary Differential Equations,” Numer. Algor 76, 191–210 (2017).

    Article  MathSciNet  Google Scholar 

  35. S. Gordon and B. J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications (I): Analysis (NASA, Washington, 1994).

    Google Scholar 

  36. L. Jie, Z. Longxi, W. Zhiwu, et al., “Thrust Measurement Method Verification and Analytical Studies on a Liquid-Fueled Pulse Detonation Engine,” Chin. J. Aeronaut 27 (3), 497–504 (2014).

    Article  Google Scholar 

  37. J. Card, D. Rival, and G. Ciccarelli, “DDT in Fuel-Air Mixtures at Elevated Temperatures and Pressures,” Shock Waves 14 (3), 167–173 (2005).

    Article  ADS  Google Scholar 

  38. E. Wintenberger, J. M. Austin, M. Cooper, et al., “An Analytical Model for the Impulse of a Single-Cycle Pulse Detonation Engine,” in Proc. 37th AIAA/ASME/SAE/ASEE Joint Prop. Conf. Exhibition, 2001.

    Google Scholar 

  39. K. Kailasanath, G. Patnaik, and C. Li, “The Flow Field and Performance of Pulse Detonation Engines,” Proc. Combust. Inst 29, 2855–2862 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Alam.

Additional information

Original Russian Text © N. Alam, K.K. Sharma, K.M. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, N., Sharma, K.K. & Pandey, K.M. Effects of Various Compositions of the Fuel—Air Mixture on the Pulse Detonation Engine Performance. Combust Explos Shock Waves 55, 708–717 (2019). https://doi.org/10.1134/S0010508219060121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219060121

Keywords

Navigation