Skip to main content
Log in

Combustion Hotspots of Energetic Condensed Systems

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The conditions of occurrence, nature, size, and shape of combustion hotspots of energetic condensed systems and the spatial dynamics of the hotspot combustion wave are discussed. A model for the propagation of hotspot combustion waves in condensed systems is briefly described based on the cellular automata method. A possible explanation for the occurrence of unsteady effects in the combustion of solid rocket propellants is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Abrukov, A. E. Averson, A. E. Davydov, V. D. Kochakov, N. N. Maksimov, and V. V. Moshev, “Study of the Mechanism of Ignition and Combustion of Gunpowder by Holography,” in Vth All-Union Symposium on Combustion and Explosion. Combustion of Condensed Systems (Chernogolovka, 1977), pp. 69–72.

    Google Scholar 

  2. V. N. Marshakov, A. G. Istratov, and V. M. Puchkov, “Combustion-Front Non-One-Dimensionality in Singleand Double-Base Propellants,” Fiz. Goreniya Vzryva 39 (4), 100–106 (2003) [Combust., Expl., Shock Waves39 (4), 452–457 (2003)].

    Google Scholar 

  3. V. N. Marshakov and G. V. Melik-Gaikazov, “Cellular Hot Spot-Type Structure of the Combustion Wave of Perchlorate Ammonium,” Khim. Fiz. 28 (12), 45–51 (2009) [Russian J. Phys. Chem. B, December 3 (6), 957–962 (2009).

    Google Scholar 

  4. A. G. Merzhanov, A. S. Mukas’yan, A. S. Rogachev, A. E. Sychev, S. Hwang, and A. Varma, “Combustion- Front Microstructure in Heterogeneous Gasless Media (Using As an Example the 5Ti + 3Si System),” Fiz. Goreniya Vzryva 32 (6), 68–81 (1996) [Combust., Expl., Shock Waves 32 (6), 655–666 (1996)].

    Google Scholar 

  5. A. S. Rogachev, A. S. Mukas’yan, and A. Varma, “Self- Propagating Microstructure of the Waves of Chemical Reactions in Heterogeneous Media,” Dokl. Akad. Nauk 366 (6), 777–780 (1999).

    Google Scholar 

  6. A. S. Rogachev, N. A. Kochetov, V. V. Kurbatkina, E. A. Levashov, P. C. Grinchuk, O. S. Rabinovich, N. V. Sachkova, and F. Bernard, “Microstructural Aspects Gasless Combustion of Mechanically Activated Mixtures. I. High Speed Microvideo Recording of the Ni + Al Composition,” Fiz. Goreniya Vzryva 42 (4), 61–70 (2006) [Combust., Expl., Shock Waves 42 (4), 421–429 (2006)].

    Google Scholar 

  7. Yu. M. Mikhailov and V. V. Aleshin, “On Flameless Combustion of Ballasted Energetic Systems,” Nauka Technol. Prom. No. 1, 17–22 (2016).

    Google Scholar 

  8. A. S. Mukasyan and A. S. Rogachev, “Discrete Reaction Waves: Gasless Combustion of Solid Powder Mixtures,” Prog. Energy Combust. Sci. 34, 377–416 (2008).

    Article  Google Scholar 

  9. N. T. Bharath, S. A. Rashkovskiy, S. P. Tewari, and M. K. Gundawar, “Dynamical and Statistical Behavior of Discrete Combustion Waves,” Phys. Rev. E 87, 042804(1–15) (2013).

    Article  ADS  Google Scholar 

  10. A. S. Rogachev and A. S. Mukasyan, “Experimental Verification of Discrete Models for Combustion of Microheterogeneous Compositions Forming Condensed Combustion Products (Review),” Fiz. Goreniya Vzryva 51 (1), 66–76 (2015) [Combust., Expl., Shock Waves 51 (1), 53–62 (2015)].

    Google Scholar 

  11. E. Mallard and H. L. LeChatelier, “Recherches Exp´erimentales et Th´eor´etiques sur la Combustion des M´elanges Gazeux Explosifs,” Ann. Mines, Ser. IV 8, 274–295 (1883).

    Google Scholar 

  12. Z. I. Fur, “Relaxation Mechanism of the Propagation of Combustion in Heterogeneous Exothermic Systems,” Zh. Fiz. Khim. 34 (3), 611–617 (1960).

    Google Scholar 

  13. L. K. Gusachenko, “Version of a Combustion Relay Model for a Mixture of Components Which Do Not Burn Spontaneously,” Fiz. Goreniya Vzryva 30 (3), 33–34 (1994) [Combust., Expl., Shock Waves 30 (3), 290–291 (1994)].

    Google Scholar 

  14. O. F. Shlensky, “Influence of Homogeneous Nucleation on the Rate of Exothermic Thermal Decomposition of Condensed Systems,” Fiz. Goreniya Vzryva 31 (1), 88–93 (1995) [Combust., Expl., Shock Waves 31 (1), 87–91 (1995)].

    Google Scholar 

  15. O. F. Shlensky, Combustion and Explosion of Materials (Mashinostroenie, Moscow, 2012) [in Russian].

    Google Scholar 

  16. V. V. Klyucharev and S. V. Klyuchareva, “The Geometry of Closed Sets in the State of Chemical Transformation,” J. Therm. Anal. Calorim. 119, 1633–1651 (2015).

    Article  Google Scholar 

  17. V. F. Proskudin, “Local Fluctuations of Physicochemical Parameters in Condensed System Combustion,” Fiz. Goreniya Vzryva 40 (5), 81–85 (2004) [Combust., Expl., Shock Waves 40 (5), 571–575 (2004)].

    Google Scholar 

  18. A. I. Kirdyashkin, V. G. Salamatov, Yu. M. Maksimov, V. F. Tarasenko, E. A. Sosnin, and R. M. Gabbasov, “X-ray Radiation in Combustion of Condensed Systems with Solid-State Reaction Products,” Dokl. Akad. Nauk 454 (1), 60–62 (2014).

    Google Scholar 

  19. D. Wilkinson and J. F. Willemsen, “Invasion Percolation: A New Form of Percolation Theory,” J. Phys. A: Math. Gen. 6, 3365–3376 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  20. Yu. V. Frolov, A. N. Pivkina, and V. V. Aleshin, “Percolation Phenomena in Combustion of Heterogeneous Condensed Systems,” Khim. Fiz. 16 (9), 73–84 (1997).

    Google Scholar 

  21. V. N. Popok and N. I. Popok, “Percolation in Energetic Composite Materials. Characteristics of Combustion, Ignition, and Sensitivity of Mixtures to Mechanical Impacts,” Butler. Soobshch. 39 (8), 1–16 (2014).

    Google Scholar 

  22. N. A. Kochetov and A. S. Rogachev, “On the Causes of Thermal Microheterogeneity of the SHS Wave,” Dokl. Akad. Nauk 389 (1), 65–67 (2003).

    Google Scholar 

  23. P. S. Grinchuk and O. S. Rabinovich, “Percolation Phase Transition in Combustion of Heterogeneous Mixtures,” Fiz. Goreniya Vzryva 40 (4), 41–53 (2004) [Combust., Expl., Shock Waves 40 (4), 408–418 (2004)].

    Google Scholar 

  24. P. S. Grinchuk and O. S. Rabinovich, “Critical Phenomena and Structural Effects in Combustion of Disordered Heterogeneous Mixtures,” Heat Transfer Res. 38 (1), 57–69 (2007).

    Article  Google Scholar 

  25. H. Scher and R. Zallen, “Critical Density in Percolation Processes,” J. Chem. Phys. 53 (12), 3759–3761 (1970).

    Article  ADS  Google Scholar 

  26. V. V. Klyucharev, “Scher–Zallen Constants,” in Fundamental Problems of Solid State Ionics, Proc. Fifth Int. Conf. (IPCP RAS, Chernogolovka, 2000), pp. 119–125.

    Google Scholar 

  27. N. N. Bakhman, “Smoldering Wave Propagation Mechanism. II. Smoldering Velocity and Temperature in Smoldering Zone,” Fiz. Goreniya Vzryva 29 (1), 16–20 (1993) [Combust., Expl., Shock Waves 29 (1), 18–24 (1993)].

    Google Scholar 

  28. Yu. V. Frolov, A. N. Pivkina, and B. E. Nikolskii, “Influence of the Spatial Structure of a Reactive Medium on Heat Liberation during Formation of Nickel and Zirconium Aluminide,” Fiz. Goreniya Vzryva 24 (5), 95–99 (1988) [Combust., Expl., Shock Waves 24 (5), 593–597 (1988)].

    Google Scholar 

  29. D. V. Korolev and A. K. Suvorov, “Conditions for the Formation of Percolation Clusters and Their Effect on the Characteristics of Pyrotechnic Charges,” in Man and Space, Abstract of IVth Int. Sci.-Pract. Conf. (Dnepropetrovsk, 2002), p. 482.

    Google Scholar 

  30. V. N. Marshakov and A. G. Istratov, “Critical Diameter and Transverse Waves of Powder Combustion,” Fiz. Goreniya Vzryva 43 (2), 72–78 (2007) [Combust., Expl., Shock Waves 43 (2), 188–193 (2007).

    Google Scholar 

  31. V. V. Aleshin and Yu. M. Mikhailov, “Spatial Forms of a Combustion Wave in Energetic Heterogeneous Systems,” Fiz. Goreniya Vzryva 44 (4), 60–65 (2008) [Combust., Expl., Shock Waves 44 (4), 425–430 (2008)].

    Google Scholar 

  32. V. V. Aleshin, E. A. Ivanova, and Yu. M. Mikhailov, “The Effect of the Structure of the Starting Mixtures on the Combustion of Gas-Generating Compositions Based on Sodium Azide,” Fiz. Goreniya Vzryva 44 (6), 72–76 (2008) [Combust., Expl., Shock Waves 44 (6), 681–684 (2008).

    Google Scholar 

  33. A. L. Efros, Physics and Geometry of Disorder (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  34. V. G. Korostelev, “On Flow Thresholds in Heterogeneous Systems,” in Energetic Condensed Systems, Proc. 2nd All-Russian Conf. (Yanus-K, Chernogolovka, 2004), pp. 120–122 [in Russian].

    Google Scholar 

  35. V. K. Tikhomirov, Foam. Theory and Practice of Their Production and Destruction (Khimiya, 1975) [in Russian].

    Google Scholar 

  36. E. Matzke and J. Nestler, “Volume-Shape Relationships in Variant Foams. A Further Study of the Role of Surface Forces in Three-Dimensional Cell Shape Determination,” Amer. J. Botany. 33 (2), 130–144 (1946).

    Article  Google Scholar 

  37. J. M. Sullivan, “The Geometry of Bubbles and Foams,” in Foams and Emulsions (Kluwer, Dordrecht, 1998), pp. 379–402. (NATO ASI Series; Vol. 354.)

    Google Scholar 

  38. G. F. Voronoi, “Nouvelles Applications des Paramètres Continus à la Théorie de Cormes Guadratiques,” J. Reine Angew. Math. 134, 198–287 (1908).

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Austin, “Voronoi Diagrams and a Day at the Beach,” in Feature Column from the AMS (2006); http://www.ams.org/samplings/feature-column/fcarcvoronoi.

    Google Scholar 

  40. S. Wigner, “On the Constitution of Metallic Sodium,” Phys. Rev. 43, 804–810 (1934); 46, 509–524 (1934).

    Article  ADS  MATH  Google Scholar 

  41. W. Thomson, “On the Division of Space with Minimum Partitional Area,” Philos. Mag. 24 (151), 503 (1887).

    Article  MATH  Google Scholar 

  42. D. Weaire and R. Phelan, “A Counter-Example to Kelvin’s Conjecture on Minimal Surfaces,” Philos. Mag. Lett. 69 (2), 107–110 (1994).

    Article  ADS  MATH  Google Scholar 

  43. R. Gabbrielli, A. J. Meagher, D. Weaire, K. A. Brakke, and S. Hutzler, “An Experimental Realization of the Weaire-Phelan Structure in Monodisperse Liquid Foam,” Philos. Mag. Lett. 92 (1), 1–6 (2012).

    Article  ADS  Google Scholar 

  44. S. Fortune, “A Sweepline Algorithm for Voronoi Diagrams,” Algorithmica 2 (2), 153–174 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  45. N. B. Pilling and R. E. Bedworth, “The Oxidation of Metals at High Temperatures,” J. Inst. Met. 29, 529–591 (1923).

    Google Scholar 

  46. Yu.M. Mikhailov, V. V. Aleshin, V. I. Vershinnikov, and T. I. Ignateva, “Burning of Mixtures of Copper Oxide with Titanium,” Fiz. Goreniya Vzryva 54 (1), 33–38 (2018) [Combust., Expl., Shock Waves 54 (1), 30–34 (2018)].

    Google Scholar 

  47. V. V. Aleshin and Yu. V. Frolov, “Modelling of Heterogeneous Solid System Combustion by the Cellular Automata Method,” in Proc. of 21th Int. Pyrotech. Seminar (Semenov Inst. of Chem. Phys., Moscow, 1995), pp. 1–7.

    Google Scholar 

  48. V. V. Aleshin and Yu. V. Frolov, “Modeling of the Combustion Dynamics of Solid Heterogeneous Mixtures by the Cellular Automata Technique,” Khim. Fiz 16 (8), 145–150 (1997).

    Google Scholar 

  49. A. Pivkina, Yu. Frolov, V. Aleshin, and A. Vinokurov, “Combustion Front Geometry of Heterogeneous Condensed Systems; Experiment and Computer Modelling,” in Proc. of 23th Int. Pyrotech. Seminar (Tzukuba, Japan, 1997), pp. 706–719.

    Google Scholar 

  50. A. N. Pivkina, V. V. Aleshin, and Yu. V. Frolov, “Fractal Dimension of the Front Combustion of Heterogeneous Condensed Systems,” in Modern Problems Rocket Technology: Proc. 2nd Meeting of the Ural Scientific Center of RAS (Izhevsk, 1997), pp. 154–164.

    Google Scholar 

  51. Yu. M. Mikhailov and V. V. Aleshin, “Spatial and Temporal Discretization of the Combustion Wave of Energetic Condensed Systems,” in Successes in Special Chemistry and Chemical Technology, Proc. All-Russian Sci.-Tech Conf. (DeLi Plus, Moscow, 2015), pp. 134–137.

    Google Scholar 

  52. A. G. Kasatkin, The Main Processes and Apparatuses of Chemical Technology (Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  53. G. G. Shelukhin, V. F. Buldakov, and V. P. Belov, “Experimental Study of the Combustion of Heterogeneous Condensed Systems,” Fiz. Goreniya Vzryva 5 (1), 42–51 (1969). [Combust., Expl., Shock Waves 5 (1), 42–51 (1969)]

    Google Scholar 

  54. L. K. Gusachenko and V. E. Zarko, “Analysis of Unsteady Solid-Propellant Combustion Models (Review),” Fiz. Goreniya Vzryva 44 (1), 35–48 (2008) [Combust., Expl., Shock Waves 44 (1), 31–42 (2008)].

    Google Scholar 

  55. V. V. Belyi, D. S. Zhuk, and V. V. Solov’ev, “Revision of the Conceptual Model of Combustion Mechanism in a Liquid-Propellant Rocket on the Basis of the Results of Highly Informative Experiments. I. A Review of Experimental Studies,” Fiz. Goreniya Vzryva 34 (5), 29–42 (1998) [Combust., Expl., Shock Waves 34 (5), 508–519 (1998)].

    Google Scholar 

  56. B. I. Larionov, “Physical Premises for the Existence of Pressure Pulsations in the SRM Combustor in the Quasistationary Operation Section,” Khim. Fiz. Mezoskop. 15 (1), 17–25 (2013).

    Google Scholar 

  57. A. A. Andreev, Thermal Decomposition and Combustion of Explosives (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Aleshin.

Additional information

Original Russian Text © Yu.M. Mikhailov, Yu.B. Kalmykov, V.V. Aleshin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, Y.M., Kalmykov, Y.B. & Aleshin, V.V. Combustion Hotspots of Energetic Condensed Systems. Combust Explos Shock Waves 55, 661–670 (2019). https://doi.org/10.1134/S0010508219060054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219060054

Keywords

Navigation