Skip to main content
Log in

Dielecric Relaxation in Energy Condensed Systems on the Basis of Polyefirretane Elastomer. II. Temperature Dependence and Ignition

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper describes the effect of the composition of energy condensed systems, containing glycerol trinitrate, aluminum powder, ammonium perchlorate, and HMX, on their ignition in an electric field with a frequency of 50 Hz. Conditions under which energy condensed systems ignite in an alternating electric field with a frequency of 50 Hz are determined experimentally. Temperature changes of their dielectric characteristics in a frequency range from 20 Hz to 1 MHz are established. The possibilities of an electric breakdown and heating of the samples are theoretically estimated. It is revealed that electrical luminescence is observed in a polymer binder based on glycerol trinitrate and polyetherurethane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Plyushner, Super High Frequency Heating (Energiya, Moscow, 1968) [in Russian].

    Google Scholar 

  2. Yu. M. Milekhin, E. S. Yushkov, I. I. Glukharyov, and D. N. Sadovnichii, “Effect of a Powerful Stream of Microwave Radiation on Energy Materials,” in Equations of State of Matter, Theses of XIII Int. Conf., Terskol, 1998.

  3. L. L. Khimenko, A. P. Rybakov, N. A. Rybakov, and A. N. Kozlov, “Experimental Study of the Effect of Electromagnetic Microwave Radiation on Parts Made of High-Energy Polymer Materials,” Prikl. Mekh. Tekh. Fiz. 55 (4), 3–10 (2014) [J. Appl. Mech. Tech. Phys. 55 (4), 551–557 (2014)].

    Google Scholar 

  4. W. Yu, T. Zhang, J. Zuo, et al., “Effect of Microwave Irradiation on TATB Explosive (II): Temperature Response and Other Risk,” J. Hazard. Mater. 173, 249–252 (2010).

    Article  Google Scholar 

  5. D. N. Sadovnichii, M. B. Markov, A. S. Vorontsov, and Yu. M. Milekhin, “Diffraction of an Electromagnetic Pulse on a Finite-Length Dielectric Gradient Cylinder,” Zh. Tekh. Fiz. 82 (9), 55–62 (2012).

    Google Scholar 

  6. D. N. Sadovnichii, M. B. Markov, A. S. Vorontsov, and Yu. M. Milekhin, “Specific Features of Propagation of an Electromagnetic Pulse in a Solid-Propellant Energetic System,” Fiz. Goreniya Vzryva 48 (1), 110–116 (2012) [Combust., Expl., Shock Waves 48 (1), 100–105 (2012)].

    Google Scholar 

  7. D. N. Sadovnichii, Yu. M. Milekhin, S. A. Malinin, et al., “Dielectric Relaxation in Energy Condensed Systems on the Basis of Polyefirretane Elastomer. I. Frequency Dependence,” Fiz. Goreniya Vzryva 53 (5), 132–140 (2017) [Combust., Expl., Shock Waves 53 (5), 611–618 (2017)].

    Google Scholar 

  8. G. S. Kuchinskii, Partial Discharges in High-Voltage Structures (Energiya, Leningrad, 1979) [in Russian].

    Google Scholar 

  9. D. A. Yagodnikov, Ignition and Combustion of Powdered Metals (Izd. Mosk. Gos. Tekh. Univ. Baumana, Moscow, 2009) [in Russian].

    Google Scholar 

  10. Broadband Dielectric Spectroscopy, Ed. by F. Kremer and A. Schönhals (Springer, Berlin, 2002).

    Google Scholar 

  11. A. V. Vannikov, “Organic Polymer Light Emitting Devices,” Ross. Khim. Zh. 45 (5/6), 41–50 (2001).

    Google Scholar 

  12. V. M. Zhukovskii, O. V. Bushkova, B. I. Lirova, et al., “Rapid Ion Transfer in Solid Polymer Electrolytes,” Ross. Khim. Zh. 45 (4), 35–43 (2001).

    Google Scholar 

  13. V. S. Kolosnitsyn, G. P. Dukhanin, S. A. Dumler, and I. A. Novakov, “Lithium-Conducting Polymer Electrolytes for Chemical Power Sources,” Zh. Prikl. Khim. 78 (1), 3–20 (2005) [Russian J. Appl. Chem. 78 (1), 1–18 (2005)].

    Google Scholar 

  14. R. C. Agrawal and G. P. Pandey, “Solid Polymer Electrolytes: Materials Designing and All-Solid-State Battery Applications: An Overview,” J. Phys. D: Appl. Phys. 41 (22), 223001(1–18) (2008).

    Article  ADS  Google Scholar 

  15. I. A. Stenina and A. B. Yaroslavtsev, “Low-and Medium-Temperature Proton-Conducting Electrolytes,” Neorg. Mater. 53 (3), 241–251 (2017).

    Article  Google Scholar 

  16. R. Meyer, J. K¨ohler, and A. Homburg, Explosives (Wiley-VCY Verlag GmbH, Weinheim, 2002).

    Book  Google Scholar 

  17. S. G. Zhirov, A. A. Koptelov, and Yu. M. Milekhin, “Thermal Conductivity of Heterogeneous Materials. Part II. A Computational Method of Thermal Conductivity for Heterogeneous Materials with Interpenetrative Components,” Prikl. Fiz., No. 4, 39–44 (2005).

    Google Scholar 

  18. V. E. Gul’ and L. Z. Shenfil’, Electrically Conductive Polymer Compositions (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

  19. E. Beloni, P. R. Santhanam, and E. L. Dreizin, “Electrical Conductivity of a Metal Powder Struck by a Spark,” J. Electrost. 70, 157–165 (2012).

    Article  Google Scholar 

  20. Technology of Metals and Other Structural Materials Ed. by P. I. Polukhin (Vyssh. Shkola, Moscow, 1970) [in Russian].

    Google Scholar 

  21. A. D. Margolin, “Electrochemical Surface Breakdown of a Dielectric,” Khim. Fiz. 16 (7), 120–124 (1997).

    Google Scholar 

  22. Yu. M. Milekhin, A. A. Koptelov, D. N. Sadovnichii, et al., “Thermal Decomposition of Polyester Polyurethane and Its Elastomers Exposed to γ-Radiation,” Fiz. Goreniya Vzryva 42 (5), 133–138 (2006) [Combust., Expl., Shock Waves 42 (5), 242–246 (2006)].

    Google Scholar 

  23. Energy Condensed Systems. Short Encyclopedia Ed. by B. P. Zhukov (Yanus-K, Moscow, 2000) [in Russian].

    Google Scholar 

  24. A. A. Koptelov and Yu. M. Milekhin, “Specific Features of Thermal Decomposition of Ammonium Perchlorate Subjected to γ-Radiation,” Fiz. Goreniya Vzryva 43 (6), 69–74 (2007) [Combust., Expl., Shock Waves 43 (6), 682–687 (2007)].

    Google Scholar 

  25. A. S. Shteinberg, Fast Reactions in Energy-Intensive Systems: High-Temperature Decomposition of Rocket Propellants and Explosives (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  26. A. A. Koptelov, Yu. M. Milekhin, D. N. Sadovnichii, and N. I. Shishov, “Application of Differential Scanning Calorimetry for Studying the Kinetics of Thermal Decomposition of Energy Materials,” Teplofiz. Vys. Temp. 46 (2), 290–304 (2008).

    Google Scholar 

  27. A. V. Savushkin, P. L. Lekomtsev, A. M. Niyazov, and N. L. Olin, Electrotechnology: Study (Izhevsk, 2013) [in Russian].

    Google Scholar 

  28. M. A. Babikov, N. S. Komarov, and A. S. Sergeev, High-Voltage Engineering (Gos. Energ. Izd., Moscow–Leningrad, 1963) [in Russian].

    Google Scholar 

  29. G. I. Skanavi, Dielectric Physics (High-Field Region) (Gos. Izd. Fiz.-Mat. Lit., Moscow, 1958) [in Russian].

    Google Scholar 

  30. B. B. Damaskin, O. A. Petrii, and G. A. Tsirlina, Electrochemistry (Khimiya, Moscow, 2001) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. N. Sadovnichii, Yu. M. Milekhin, S. A. Lopatkin, T. S. Skripina, S. A. Malinin or I. N. Gross.

Additional information

Original Russian Text © D.N. Sadovnichii, Yu.M. Milekhin, S.A. Lopatkin, T.S. Skripina, S. A. Malinin, I.N. Gross.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnichii, D.N., Milekhin, Y.M., Lopatkin, S.A. et al. Dielecric Relaxation in Energy Condensed Systems on the Basis of Polyefirretane Elastomer. II. Temperature Dependence and Ignition. Combust Explos Shock Waves 55, 220–229 (2019). https://doi.org/10.1134/S0010508219020114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508219020114

Keywords

Navigation