Skip to main content
Log in

Computer simulation of the structure and electronic and detonation properties of energy materials

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Computer modeling is used within the framework of the theory of density functional to determine the physical and chemical properties of a set of energy materials, which correlate with detonation parameters and sensitivity factors. There are two models of prediction of detonation parameters and sensitivity factors formulated for molecules and explosive crystals that satisfactorily correlate with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Molodets and Yu. N. Zhuravlev “Equations of State of Silver Azide and Calculation of Its Hugoniots,” Fiz. Goreniya Vzryva 49 (4), 114–119 (2013) [Combust., Expl., Shock Waves 49 (4), 484–489 (2013)].

    Google Scholar 

  2. A. V. Khaneft and V. A. Dolgachev, “Simulation of Initiation of PETN by a Nanosecond Laser Pulse in the Weak Absorption Region,” Fiz. Goreniya Vzryva 50 (1), 115–123 (2014) [Combust., Expl., Shock Waves 50 (1), 105–112 (2014)].

    Google Scholar 

  3. X.-L. Guo, W. Cao, Y.-L. Duan, et al., “Experimental Study and Numerical Simulation of the Corner Turning of TATB Based and CL-20 Based Polymer Bonded Explosives,” Fiz. Goreniya Vzryva 52 (6), 111–118 (2016) [Combust., Expl., Shock Waves 52 (6), 719–726 (2016)].

    Google Scholar 

  4. X. H. Duan, W. P. Li, Ch. H. Pei, et al., “Molecular Dynamics Simulations of Void Defects in the Energetic Material HMX,” J. Mol. Model. 19, 3893–3899 (2013).

    Article  Google Scholar 

  5. G. W. Brown and A. M. Giambra, “HPLC-MS Examination of Impurities in Pentaerythritol Tetranitrate,” J. Energ. Mater. 32, 117–128 (2013).

    Article  Google Scholar 

  6. E. D. Aluker, A. G. Krechetov, A. Y. Mitrofanov, et al., “Topography of Photochemical Initiation in Molecular Materials,” Molecules 18, 14148–14160 (2013).

    Article  Google Scholar 

  7. H. Shekhar, “The Applicability of Kamlet’s Method for the Prediction of the Velocity of Detonation (VOD) of Polyurethane (PU) Based Binary Explosive Compositions,” Centr. Eur. J. Energ. Mater. 10 (2), 217–223 (2013).

    MathSciNet  Google Scholar 

  8. P. Politzer and J. S. Murray, “Some Perspectives on Estimating Detonation Properties of C, H, N, O Compounds,” Centr. Eur. J. Energ. Mater. 8 (3), 209–220 (2011).

    Google Scholar 

  9. P. Politzer and J. S. Murray, “Impact Sensitivity and the Maximum Heat of Detonation,” J. Mol. Model. 21, 262 (2015).

  10. E. F. C. Byrd and B. M. Rice, “Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Chemical Calculations,” J. Phys. Chem. A 110, 1005–1013 (2006).

    Article  Google Scholar 

  11. M. H. Keshavarz, R. T. Mofrad, R. F. Alamdari, et al., “Velocity of Detonation at Any Initial Density Without Using Heat of Formation of Explosives,” J. Hazard. Mater. A 137, 1328–1332 (2006).

    Article  Google Scholar 

  12. T. L. Prazyan and Yu. H. Zhuravlev, “Study of Physical and Chemical Properties of a Series of Explosives by Means of Computer Simulation,” Vestn. Kem. Gos. Univ. 20 (4/60), 137–144 (2014).

    Google Scholar 

  13. R. Dovesi, V. R. Saunders, C. Roetti, et al., CRYSTAL14 User’s Manual (Univ. of Torino, Torino, 2016).

    Google Scholar 

  14. A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  15. “CRYSTAL Basis Sets Library,” www.crystal.unito.it/Basis Sets/Ptable.html (reference date October 18, 2016).

  16. S. Grimme, “Semiempirical GGA-Type Density Functional Constructed with a Long-Range Dispersion Correction,” J. Comput. Chem. 27, 1787–1799 (2006).

    Article  Google Scholar 

  17. Y. Ma, A. Zhang, Ch. Zhang, et al., “Crystal Packing of Low-Sensitivity and High-Energy Explosives,” Cryst. Growth Des. 14 (9), 4703–4713 (2014).

    Article  Google Scholar 

  18. M. J. Kamlet and H. Hurwitz, “Chemistry of Detonations. IV. Evaluation of a Simple Predictional Method for Detonation Velocities of C–H–N–O Explosives,” J. Chem. Phys. 48, 3685–3692 (1968).

    Article  ADS  Google Scholar 

  19. C. J. Wu and L. E. Fried, “Ring Closure Mediated by Intramolecular Hydrogen Transfer in the Decomposition of a Push-Pull Nitroaromatic: TATB,” J. Phys. Chem. A 104, 6447–6452 (2000).

    Article  Google Scholar 

  20. R. Meyer and J. Köhler, Explosives (Wiley-VCH, Weinheim, 2007).

    Book  Google Scholar 

  21. H. S. Dong and F. F. Zhou, Performance of High Explosives and Correlates (Science Press, Beijing, 1989).

    Google Scholar 

  22. C. L. Mader, Numerical Modeling of Explosives and Propellants. 3d Ed. (CRC Press, Boca Raton, 2007).

    Book  Google Scholar 

  23. A. K. Sikder, G. Maddala, and J. P. Agrawal, “Important Aspects of Behavior of Organic Energetic Compounds: A Review,” J. Hazard. Mater. A 84, 1–26 (2001).

    Article  Google Scholar 

  24. B. M. Rice and J. J. Hare, “A Quantum Mechanical Investigation of the Relation between Impact Sensitivity and the Charge Distribution in Energetic Molecules,” J. Phys. Chem. A 106, 1770–1783 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Prazyan.

Additional information

Original Russian Text © T.L. Prazyan, Yu.N. Zhuravlev.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 6, pp. 110–115, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prazyan, T.L., Zhuravlev, Y.N. Computer simulation of the structure and electronic and detonation properties of energy materials. Combust Explos Shock Waves 53, 718–723 (2017). https://doi.org/10.1134/S0010508217060132

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217060132

Keywords

Navigation