Skip to main content
Log in

Laser initiation of low-density mixtures of PETN with metal additives

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents data on laser initiation of low-density mixtures of PETN with metal additives with varying dispersity of PETN and particle size of the additive. A laser with a wavelength of 1.06 μm and a pulse length of 40 and 30 ns was used. Curves of the threshold initiation parameters on the additive content are shown to have minima. For coarse additives, no significant dependence of the initiation threshold of the mixtures on the nature of the metal at its optimal content (except for aluminum) was observed. For PETN mixtures with an optimal amount of fine aluminum, a significantly greater (a factor of 6.2) decrease in the threshold initiation parameters compared to direct initiation of PETN was found. It is shown that the initiation thresholds of the mixtures do not depend on the dispersity of PETN with the optimal additive content. Increasing the dispersity of PETN extends the dependences of the threshold parameters on the additive content while the optimal additive content is shifted to higher values. The initiation thresholds are found to strongly depend on the density of the mixture charge. The key points of the mechanism of laser initiation of PETN mixtures with additives are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Brish, I. A. Galeev, B. N. Zaitsev, et al., “Laser-Excited Detonation of Condensed Explosives,” Fiz. Goreniya Vzryva 2 (3), 132–133 (1966) [Combust., Expl., Shock Waves 2 (3), 81–82 (1966)].

    Google Scholar 

  2. I. A. Galeev and B. N. Zaitsev, “Mechanism of Excitation Radiation from the Detonation of Explosives Optical Maser,” in Abstracts of the First All-Union. Sympos. on Combustion and Explosion (Nauka, Moscow, 1968), pp. 146–147.

    Google Scholar 

  3. I. A. Galeev and B. N. Zaitsev, “On the Reflectivity of High Explosives,” Fiz. Goreniya Vzryva 5 (3), 447 (1969).

    Google Scholar 

  4. A. A. Brish, I. A. Galeev, B. N. Zaitsev, et al., “Mechanism of Initiation of Condensed Explosives by Laser Radiation,” Fiz. Goreniya Vzryva 5 (4), 475–480 (1969) [Combust., Expl., Shock Waves 5 (4), 326–328 (1969)].

    Google Scholar 

  5. A. A. Volkova, A. D. Zinchenko, I. V. Sanin, et al., “Time Characteristics of Laser Initiation of PETN,” Fiz. Goreniya Vzryva 13 (5), 760–766 (1977) [Combust., Expl., Shock Waves 13 (5), 645–650 (1977)].

    Google Scholar 

  6. A. D. Zinchenko, V. I. Sdobnov, V. I. Tarzhanov, et al., “Action of a Laser on a Porous Explosive Substance, without Initiation,” Fiz. Goreniya Vzryva 27 (2), 97–101 (1991) [Combust., Expl., Shock Waves 27 (2), 219–222 (1991)].

    Google Scholar 

  7. A. D. Zinchenko, A. I. Pogrebov, V. I. Tarzhanov, and B. B. Tokarev, “Optical Characteristics of Some Powdered High Explosives,” Fiz. Goreniya Vzryva 28 (5), 80–86 (1992) [Combust., Expl., Shock Waves 28 (5), 524–529 (1992)].

    Google Scholar 

  8. V. I. Tarzhanov, A. D. Zinchenko, B. N. Smirnov, et al., “PETN Initiation by a Light-Induced Explosion of a Metal Film,” Fiz. Goreniya Vzryva 32 (2), 111–116 (1996) [Combust., Expl., Shock Waves 32 (2), 214–218 (1996)].

    Google Scholar 

  9. V. I. Tarzhanov, A. D. Zinchenko, V. I. Sdobnov, et al., “Laser Initiation of PETN,” Fiz. Goreniya Vzryva 32 (4), 113–119 (1996) [Combust., Expl., Shock Waves 32 (4), 454–459 (1996)].

    Google Scholar 

  10. Fast Initiation of Explosives. Special Detonation Modes: Collected Papers, Ed. by V. I. Tarzhanov (VNIITF, Snezhinsk, 1998) [in Russian].

  11. V. E. Aleksandrov, A. V. Dolgolaptev, V. B. Ioffe, et al., “Ignition of Condensed Media with Absorbing Additives upon Concentrated Application of Radiant Energy,” Fiz. Goreniya Vzryva 9 (4), 17–20 (1983) [Combust., Expl., Shock Waves 19 (4), 384–386 (1983).

    Google Scholar 

  12. V. B. Ioffe, A. V. Dolgolaptev, V. E. Aleksandrov, and A. P. Obraztsov, “Laser Pulse Ignition of Condensed Systems Containing Aluminum,” Fiz. Goreniya Vzryva 21 (3), 51–55 (1985) [Combust., Expl., Shock Waves 21 (3), 316–320 (1985)].

    Google Scholar 

  13. E. I. Aleksandrov, A. G. Voznyuk, and V. P. Tsipilev, “Effect of Absorbing Impurities on Explosive Initiation by Laser Light,” Fiz. Goreniya Vzryva 25 (1), 3–8 (1989) [Combust., Expl., Shock Waves 25 (1), 1–6 (1989)].

    Google Scholar 

  14. V. N. Lobanov, R. G. Lenskii, Yu. I. Plotnikov, et al., “Critical Conditions for Initiation of Secondary Explosives under Pulsed Thermal Actions,” in Chemical Physics of Combustion and Explosion. Detonation (Chernogolovka, 1989), pp. 25–27 [in Russian].

    Google Scholar 

  15. Yu. A. Zakharov, E. D. Aluker, B. P. Aduev, et al., Predetonation Phenomena in Heavy Metal Azides (Khimmash, Moscow, 2002) [in Russian].

    Google Scholar 

  16. E. D. Aluker, A. G. Krechetov, B. G. Loboiko, et al., “Effect of Temperature on the Laser Initiation of PETN,” Khim. Fiz. 27 (5), 53–55 (2008).

    Google Scholar 

  17. B. P. Aduev, D. R. Nurmukhametov, I. Yu. Liskov, et al., “Initiation of the Explosive Decomposition of PETN by Pulsed Radiation of the Second Harmonic of a Neodymium Laser,” Khim. Fiz. 34 (11), 44–49 (2015).

    Google Scholar 

  18. B. P. Aduev, D. R. Nurmukhametov, and A. V. Puzynin, “Influence of Nickel Monocarbide Particles on the Sensitivity of PETN to Laser Initiation,” Khim. Fiz. 28 (11), 50–53 (2009).

    Google Scholar 

  19. B. P. Aduev, D. R. Nurmukhametov, V. P. Tsipilev, and R. I. Furega, “Effect of Ultrafine Al–C Particle Additives on the PETN Sensitivity to Radiation Exposure,” Fiz. Goreniya Vzryva 49 (2), 102–105 (2013) [Combust., Expl., Shock Waves 49 (2), 215–218 (2013)].

    Google Scholar 

  20. B. P. Aduev and D. R. Nurmukhametov, “Influence of Aluminum Nanoparticles on the Sensitivity of PETN to Laser Exposure,” Khim. Fiz. 30 (3), 63–65 (2011).

    Google Scholar 

  21. B. P. Aduev, D. R. Nurmukhametov, R. I. Furega, and I. Yu. Liskov, “Light Absorption by Compounds Based on PETN and Aluminum Nanoparticles under Laser Pulses,” Khim. Fiz. 33 (12), 29–32 (2014).

    Google Scholar 

  22. Yu. V. Sheikov, S. M. Bat’yanov, D. V. Mil’chenko, et al., “On the Mechanism of Initiation of Aluminized High Explosives by Laser Radiation,” in Extreme States of Matter. Detonation. Shock Waves, Proc. of the XVII Khariton’s Topical Scientific Readings (Sarov, 2015), pp. 56–58.

    Google Scholar 

  23. Physics of Explosion, Ed. by L. P. Orlenko (Fizmatlit, Moscow, 2004), Vol. 1 [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Tarzhanov.

Additional information

Original Russian Text © V.I. Tarzhanov, V.I. Sdobnov, A.D. Zinchenko, A.I. Pogrebov.

Published in Fizika Goreniya i Vzryva, Vol. 53, No. 2, pp. 118–125, March–April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarzhanov, V.I., Sdobnov, V.I., Zinchenko, A.D. et al. Laser initiation of low-density mixtures of PETN with metal additives. Combust Explos Shock Waves 53, 229–235 (2017). https://doi.org/10.1134/S0010508217020149

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508217020149

Keywords

Navigation