Skip to main content
Log in

Generation of hydrodynamic instability in the gasification region of propellant

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

This paper presents the new way of the occurrence of “natural” turbulence in the Gusachenko–Zarko mechanism of negative erosion effect during the propellant burning. It is shown that the propellant gasification region can generate hydrodynamic instability if its burning rate at a constant temperature depends on the pressure. The hydrodynamic instability of the propellant combustion that decompose according to the solid phase → liquid phase → gas and solid phase → gas scheme occurs under quite different conditions. The gasification region in propellants of the first type is more inclined to instability generation than that in propellants of the second type. The hydrodynamic instability occurs if the critical value of the Reynolds number, which depends on the properties of the propellant and environmental conditions, is exceeded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Vilyunov and A. A. Dvoryashin, “An Experimental Investigation of the Erosive Burning Effect,” Fiz. Goreniya Vzryva 7 (1), 45–51 (1971) [Combust., Expl., Shock Waves 7 (1), 38–42 (1971)].

    Google Scholar 

  2. L. K. Gusachenko and V. E. Zarko, “Erosive Burning. Modeling Problems,” Fiz. Goreniya Vzryva 43 (3), 47–58 (2007) [Combust., Expl., Shock Waves 43 (3), 286–296 (2007)].

    Google Scholar 

  3. V. N. Marshakov, A. G. Istratov, and V. M. Puchkov, “Combustion-Front Non-One-Dimensionality in Singleand Double-Base Propellants,” Fiz. Goreniya Vzryva 39 (4), 100–106 (2003) [Combust., Expl., Shock Waves 39 (4), 452–457 (2003)].

    Google Scholar 

  4. V. N. Marshakov and A. G. Istratov, “Wave Structure of the Solid-Propellant Combustion Front,” in Progress in Combustion and Detonation, Ed. by A. A. Borisov, S. M. Frolov, and A. L. Kuhl (Torus Press, Moscow, 2004). Int. Conf. On Combustion and Detonation. Zeldovich Memorial, 30.08–03.09. 2004, Moscow, Russia CD-disk, Paper No. W2-2, 11 p.

    Google Scholar 

  5. V. N. Marshakov and A. G. Istratov, “Critical Diameter and Transverse Waves of Powder Combustion,” Fiz. Goreniya Vzryva 43 (2), 72–78 (2007) [Combust., Expl., Shock Waves 43 (2), 188–193 (2007)].

    Google Scholar 

  6. L. K. Gusachenko and V. E. Zarko, “Combustion Models for Energetic Materials with Completely Gaseous Reaction Products,” Fiz. Goreniya Vzryva 41 (1), 24–40 (2005) [Combust., Expl., Shock Waves 41 (1), 20–34 (2005)].

    Google Scholar 

  7. A. G. Merzhanov and F. I. Dubovitskii, “Theory of Stationary Combustion of Powder,” Dokl. Akad. Nauk SSSR 129, 153–156 (1959).

    Google Scholar 

  8. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosion (Nauka, Moscow, 1980; Plenum, New York, 1985).

    Google Scholar 

  9. K. O. Sabdenov and S. N. Postnikov, “Laminar Flame Theory. Part I,” Fiz. Goreniya Vzryva 29 (1), 42–46 (1993) [Combust., Expl., Shock Waves 29 (1), 39–42 (1993)].

    Google Scholar 

  10. K. O. Sabdenov, “Laminar Flame Theory. Part II,” Fiz. Goreniya Vzryva 29 (5), 22–30 (1993) [Combust., Expl., Shock Waves 29 (5), 568–576 (1993)].

    Google Scholar 

  11. K. O. Sabdenov, “Laminar Flame Theory. Part III,” Fiz. Goreniya Vzryva 29 (6), 685–693 (1993) [Combust., Expl., Shock Waves 29 (5), 685–693 (1993)].

    Google Scholar 

  12. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (JohnWiley and Sons, 1971).

    MATH  Google Scholar 

  13. K. O. Sabdenov, J. Dueck, and M. Erzada, “Limits of Steady Burning Propellants in the Phenomenological Theory Using Effective Initial Temperature,” J. Therm. Sci. Technol. 10 (1) (2015); DOI: 10.1299/jtst.2015jtst0006.

    Google Scholar 

  14. K. O. Sabdenov, Unstable Combustion of Solid Propellants. Problems and Modeling Success (Lambert Acad. Publ. GmbH, Saarbrucken, Germany, 2012).

    Google Scholar 

  15. K. O. Sabdenov, The Theory of Unsteady Combustion of Solid Propellants (Izd. Tom. Politekh. Univ., Tomsk, 2006) [in Russian].

    Google Scholar 

  16. K. O. Sabdenov and M. Erzada, “Mechanism of the Negative Erosion Effect,” Fiz. Goreniya Vzryva 49 (3), 22–33 (2013) [Combust., Expl., Shock Waves 49 (3), 273–282 (2013)].

    Google Scholar 

  17. K. O. Sabdenov and M. Erzada, “Negative Erosion Effect and the Emergence of Unstable Combustion. 1. Analysis of the Models,” Fiz. Goreniya Vzryva 49 (3), 76–83 (2016) [Combust., Expl., Shock Waves 49 (3), 273–282 (2016)].

    Google Scholar 

  18. Richard Nakka’s Experimental Rocketry; http://www.nakka-rocketry.net/burnrate.html.

  19. H. S. Mukunda, “A Comprehensive Theory of Erosive Burning in Solid Rocket Propellants,” Combust. Sci. Technol. 18 (3–4), 105–118 (1978).

    Article  Google Scholar 

  20. W. Frost and T. H. Moulden, Handbook of Turbulence: Fundamentals and Application (Plenum Press, New York, 1977).

    Book  Google Scholar 

  21. Y. M. Timnat, Advanced Chemical Rocket Propulsion (Academic Press, 1987).

    Google Scholar 

  22. D I. Abugov and V. M. Bobylev, Theory and Calculation of Solid Propellant Engines (Mashinostroenie, Moscow, 1987).

    Google Scholar 

  23. L. K. Gusachenko, V. E. Zarko, V. Ya. Zyryanov, and V. P. Bobryshev, Simulation of Combustion of Solid Propellants (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  24. V. A. Strunin, G. B. Manelis, A. N. Ponomarev, and V. L. Tal’roze, “Effect of Ionizing Radiation on the Combustion of Ammonium Perchlorate and Composite Systems Based on Ammonium Perchlorate,” Fiz. Goreniya Vzryva 4 (4), 584–590 (1968) [Combust., Expl., Shock Waves 4 (4), 339–342 (1968)].

    Google Scholar 

  25. G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Gunpowders (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  26. F. A. Williams, Combustion Theory (Addison-Wesley–Palo Alto, Reading–London, 1964).

    Google Scholar 

  27. O. Knake and I. N. Stranskii, “Mechanism of Evaporation,” Usp. Fiz. Nauk LXVIII (2), 261–305 (1959).

    Article  Google Scholar 

  28. D. V. Sivukhin, The General Course of Physics. Thermodynamics and Molecular Physics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  29. Nonsteady Flame Propagation, Ed. by G. H. Markstein (Pergamon Press, 1964).

  30. L. D. Landau, “The Theory of Slow Combustion,” Zh. Eksp. Teor. Fiz. 14 (6), 240–244 (1944).

    Google Scholar 

  31. S. V. Alekseenko, V. E. Nakoryakov, and B. G. Pokusaev, Wave Flow of Liquid Films (Nauka, Novosibirsk, 1992) [in Russian].

    MATH  Google Scholar 

  32. B. V. Novozhilov, Unsteady Combustion of Solid Propellants (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  33. K. O. Sabdenov and M. Erzada, “Negative Erosion Effect and the Emergence of Unstable Combustion. 2. Numerical Simulation,” Fiz. Goreniya Vzryva 52 (2), 76–87 (2016) [Combust., Expl., Shock Waves 52 (2), 193–202 (2016)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Sabdenov.

Additional information

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 6, pp. 70–82, November–December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabdenov, K.O. Generation of hydrodynamic instability in the gasification region of propellant. Combust Explos Shock Waves 52, 683–693 (2016). https://doi.org/10.1134/S0010508216060083

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216060083

Keywords

Navigation