Skip to main content
Log in

Solid propellant combustion in a high-velocity cross-flow of gases (review)

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

Combustion of solid propellants in rocket propulsion systems usually occurs in an intense cross-flow of combustion products (solid rocket motor), gaseous oxidizer (hybrid rocket motor) or air (ramjet and air-breathing engines). This leads to the so-called erosive burning effects, resulting in a change in the burning law under the influence of the gas flow. The main approaches to modeling the erosive burning of solid propellants in a high-velocity cross-flow of gases are considered. Methods for the criterial description of the results of experimental studies of the erosive burning of solid propellants under transonic and supersonic flow conditions are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. I. Leipunskii, “On the Physical Basis of the Interior Ballistics of Missiles,” Doct. Dissertation in Phys.-Math. Sci. (Inst. of Chem. Phys., Academy of Sciences of the USSR, Moscow, 1945). Published in Theory of Combustion of Propellants and Explosives (Nauka, Moscow, 1982), pp. 226–277 [in Russian].

    Google Scholar 

  2. M. K. Razdan, K. K. Kuo, “Erosive Burning of Solid Propellants,” in Progress in Astronautics and Aeronautics, Vol. 90 (4): Fundamentals of Solid Propellant Combustion, Ed. by K. K. Kuo and M. Summerfield (New York, 1994).

    Google Scholar 

  3. L. K. Gusachenko and V. E. Zarko, “Erosive Burning. Modeling Problems,” Fiz. Goreniya Vzryva 43 (3), 47–58 (2007) [Combust., Expl., Shock Waves 43 (3), 286–296 (2007)].

    Google Scholar 

  4. V. K. Bulgakov and A. M. Lipanov, Theory of Erosive Burning of Solid Propellants (Nauka, Moscow, 2001) [in Russian].

    Google Scholar 

  5. H. Muraour, “Sur la Théorie des Réactions Explosives. Cas Particulier des Explosifs D‘amourcage,” Bull. Soc. Chem. Fr. 51, 1152–1166 (1932).

    Google Scholar 

  6. I. P. Grave, Interior Ballistics: Pyrodynamics (Artakademiya Dzerzhinskogo, Leningrad, 1934) [in Russian].

    Google Scholar 

  7. Yu. I. Dimitrienko and I. D. Dimitrienko, “Thermomechanical Model of Erosive Burning of Energetic Materials,” Vestn. MSTU Baumana, Ser. Estestv. Nauki, 96–112 (2012).

    Google Scholar 

  8. Ya. B. Zel’dovich, “Theory of Propellant Combustion in a Gas Flow,” Fiz. Goreniya Vzryva 7 (4), 463–476 (1971) [Combust., Expl., Shock Waves 7 (4), 399–408 (1971)].

    Google Scholar 

  9. V. N. Vilyunov, “On Theory of Erosive Burning of Propellants,” Dokl. Akad. Nauk SSSR 136 (2), 381 (1961).

    Google Scholar 

  10. H. Schlichting, Boundary-Layer Theory (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  11. S. S. Kutateladze and A. I. Leont’ev, Turbulent Boundary Layer of a Compressible Gas (Nauka, Novosibirsk, 1962) [in Russian].

    Google Scholar 

  12. Ya. I. Shapiro, G. Yu. Mazing, and N. E. Prudnikov, Theory of Solid Propellant Rocket Motors (Voenizdat, Moscow, 1966) [in Russian].

    Google Scholar 

  13. S. S. Kutateladze, Heat Transfer and Hydrodynamic Resistance: Handbook (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  14. V. N. Vilyunov and A. D. Kolmakov, “Burning Rate of Propellants in a Turbulent Flow of Gases,” Tr. Sib. Fizikotekh. Inst., No. 3 (1963).

  15. V. N. Vilyunov, A. A. Dvoryashin, A. D. Margolin, S. K. Ordzhonikidze, and P. F. Pokhil, “Burning of Ballistite Type H in Sonic Flow,” Fiz. Goreniya Vzryva 8 (4), 501–505 (1972) [Combust., Expl., Shock Waves 8 (4), 410–413 (1972)].

    Google Scholar 

  16. V. N. Vilyunov and Yu. M. Isaev, “Erosive Burning in Supersonic Flow,” in Chemical Physics of Combustion and Explosion. Combustion of Condensed Systems, Proc. IX All-Union Symp. on Combustion and Explosion (Chernogolovka, 1989), pp. 12–15.

    Google Scholar 

  17. V. A. Arkhipov, D. A. Zimin, E. A. Kozlov, and N. S. Tret’yakov, “Experimental Study of the Erosive Burning of Solid Propellants,” Khim. Fiz. 16 (9), 101–106 (1997).

    Google Scholar 

  18. V. A. Arkhipov and D. A. Zimin, “Erosive Burning of a Solid Propellant in a Supersonic Flow,” Fiz. Goreniya Vzryva 34 (1), 61–64 (1998) [Combust., Expl., Shock Waves 34 (1), 55–57 (1998)].

    Google Scholar 

  19. V. A. Arkhipov, E. A. Zverev, and D. A. Zimin, “Solving an Inverse Problem of Erosive Burning Rate Reconstruction,” Fiz. Goreniya Vzryva 38 (1), 73–79 (2002) [Combust., Expl., Shock Waves 38 (1), 65–70 (2002)].

    Google Scholar 

  20. V. A. Arkhipov and N. S. Tretyakov “Erosive Burning of Solid Propellants,” in Rocket Motors and Problems of Space Exploration (Torus Press, Moscow, 2005), pp. 220–230 [in Russian].

    Google Scholar 

  21. V. N. Aleksandrov, V. M. Bytskevich, V. K. Verkholomov, et al., Integral Solid Propellant Ramjets (Fundamentals of Theory and Calculation) (Akademkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  22. Yu. M. Kochetkov, M. L. Kuranov, and M. L. Filimonov, “Methodical Bases of Gas Dynamics and Interior Ballistics of Nozzleless SRM, Prospects for Use,” Polet: Aviatsiya, Raket. Tekh. Kosmonavt., No. 11, 4–12 (2002).

    Google Scholar 

  23. J. M. Lenoir and G. A. Robillard, “A Mathematical Method to Predict the Effects of Erosive Burning in Solid Propellant Rockets,” in Sixth Symp. (Int.) on Combustion (1957), pp. 663–667.

  24. C. A. Saderholm, R. A. Biddle, L. H. Caveny, and M. Summerfield, “Combustion Mechanisms of Fuel-Rich Propellants in Flow Fields,” in AIAA 8th Propulsion Conf., AIAA Paper No. 72-1145 (1972).

  25. G. Lengelle, “Model Describing the Erosive Burningand Velocity Response of Composite Propellants,” AIAA J. 13 (3), 315–322 (1975).

    Article  ADS  Google Scholar 

  26. J. C. Godon, J. Duterque, and G. Lengelle, “Solid-Propellant Erosive Burning,” J. Propul. Power 8 (4), (1992).

    Article  Google Scholar 

  27. M. K. Razdan and K. K. Kuo, “Erosive Burning Study of Composite Solid Propellants by Turbulent Boundary-Layer Approach,” AIAA J. 17 (11), (1979).

    Google Scholar 

  28. M. J. Chiaverini, K. K. Kuo, A. Peretz, et al., “Regression-Rate and Heat-Transfer Correlations for Hybrid Rocket Combustion,” J. Propul. Power 17 (1), 99–110 (2001).

    Article  Google Scholar 

  29. W. H. Heiser and D. T. Pratt, Hypersonic Airbreathing Propulsion (Washington, DC, 1994); ISBN 1-56347-035-7. (AIAA Education Ser.)

    Book  Google Scholar 

  30. P. J. Waltrup, M. E.White, and F. Zarlingo, “History of U. S. Navy Ramjet, Scramjet, and Mixed-Cycle Propulsion Development,” AIAA Paper No. 96-3152 (1996).

    Book  Google Scholar 

  31. Encyclopedia Astronautica; http://www.astronautix.com/lvs/gird09.htm.

  32. G. A. Marxman, C. E. Wooldridge, and R. J. Muzzy, “Fundamentals of Hybrid Boundary-Layer Combustion,” in Progress in Astronautics and Aeronautics, Vol. 15: Heterogeneous Combustion (Academic Press, 1964).

    Google Scholar 

  33. G. P. Sutton and O. Biblarz, Rocket Propulsion Elements (Wiley and Sons, New York, 2001).

    Google Scholar 

  34. M. Grosse, “Effect of a Diaphragm on Performance and Regression of a Laboratory Scale Hybrid Rocket Motor Using Nitrous Oxide and Paraffin,” in 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper No. 2009-5113 (2009).

    Google Scholar 

  35. N. Bellomo, M. Marta Lazzarin, and F. Barato, “Numerical Investigation of the Effect of a Diaphragm on the Performance of a Hybrid Rocket Motor,” AIAA Paper No. 2010-7033 (2010).

    Book  Google Scholar 

  36. Yu. A. Kustov and S. S. Rybanin, “Effect of Chemical Kinetics on the Burning Rate of a Propellant Slab in a Turbulent Oxidizer Flow,” Fiz. Goreniya Vzryva 6 (1), 54–64 (1970) [Combust., Expl., Shock Waves 6 (1), 50–59 (1970)].

    Google Scholar 

  37. D. R. Greatrix, “Regression Rate Estimation for Standard-Flow Hybrid Rocket Engines,” Aerospace Sci. Technol. 13, 358–363 (2009).

    Article  Google Scholar 

  38. L. Fanton, C. Paravan, and L. T. DeLuca, “Testing and Modeling Fuel Regression Rate in a Miniature Hybrid Burner,” Int. J. Aerospace Eng. 15, (2012); ID 673838 2012.

  39. A. Karabeyoglu, G. Zilliac, and B. J. Cantwell, “Combustion of Liquefying Hybrid Propellants: Part 1. General Theory,” J. Propul. Power 18 (3), (2002).

    Google Scholar 

  40. A. Karabeyoglu, D. Altman, and B. J. Cantwell, “Scale-Up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels,” J. Propul. Power. 20 (6), 1037–1045 (2004).

    Article  Google Scholar 

  41. A. Antoniou and K. M. Akyuzlu, “A Physics Based Comprehensive Mathematical Model to Predict Motor Performance in Hybrid Rocket Propulsion Systems,” AIAA Paper 2005-3541, (2005).

    Book  Google Scholar 

  42. N. Serin and Y. A. Gögüs, “A Fast Computer Code for Hybrid Motor Configuration, Eulec, and Results Obtained for HTPB/O2 Combination,” AIAA Paper No. 2003-4747 (2003).

  43. N. Gascoin and P. Gillard, “Preliminary Pyrolysis and Combustion Study for the Hybrid Propulsion,” AIAA Paper No. 2010-6871 (2010).

  44. R. Hilbert, F. Tap, H. El-Rabii, and D. Thévenin, “Impact of Detailed Chemistry and Transport Models on Turbulent Combustion Simulations,” Prog. Energy Combust. Sci. 30, 61–117 (2004).

    Article  Google Scholar 

  45. D. Bianchi, B. Betti, and F. Nasuti, “Simulation of Gaseous Oxygen/Hydroxyl-Terminated Polybutadiene Hybrid Rocket Flowfields and Comparison with Experiments,” J. Propul. Power 31 (3), 919–929 (2015).

    Article  Google Scholar 

  46. H. Arisawa and T. B. Brill, “Flash Pyrolysis of Hydroxyl-Terminated Poly-Butadiene (HTPB) II: Implications of the Kinetics to Combustion of Organic Polymers,” Combust. Flame 106 (1–2), 144–154 (1996); DOI: 10.1016/0010-2180(95)00254-5.

    Article  Google Scholar 

  47. D. Bianchi, F. Nasuti, and D. Delfini, “Modeling of Gas-Surface Interface for Paraffin-Based Hybrid Rocket Fuels in CFD Simulations,” in 6th Eur. Conf. for Aerospace Sciences (Krakow, 2015), FP EUCASS-368.

    Google Scholar 

  48. M. Faenza, F. Barato, and M. Lazzarin, et al., “Hybrid Rocket Motors Regression Rate Prediction Through CFD Simulations,” in 6th Eur. Conf. for Aerospace Sciences (Krakow, 2015), FP EUCASS-074.

    Google Scholar 

  49. S. May and O. Bozic, “CFD Simulation of Chemical Non-Equilibrium Reacting Flow within AHRES Hybrid Rocket Engine,” in 6th Eur. Conf. for Aerospace Sciences (Krakow, 2015), FP EUCASS-215.

    Google Scholar 

  50. P. Milova, R. Blanchard, and L. Galfetti, “A Parametric Study of the Effect of Liquid Entrainment on the Combustion Characteristics of a Paraffin Based Hybrid Rocket Motor,” in 6th Eur. Conf. for Aerospace Sciences (Krakow, 2015), FP EUCASS-327.

    Google Scholar 

  51. A. M. Gubertov, V. V. Mironov, and R. G. Gollender, et al., Processes in Hybrid Rocket Motors (Nauka, Mocsow, 2008) [in Russian].

    Google Scholar 

  52. D. W. Netzer, “Modeling Solid-Fuel Ramjet Combustion,” J. Spacecraft Rockets 14 (12), (1977).

    Article  Google Scholar 

  53. D. W. Netzer, “Model Application to Solid-Fuel Ramjet Combustion,” J. Spacecraft Rockets 15 (5), (1978)

    Article  Google Scholar 

  54. C. A. Stevenson and D. W. Netzer, “Primitive Variable Model Application to Solid-Fuel Ramjet Combustion,” J. Spacecraft and Rockets 28 (1), (1981).

    Google Scholar 

  55. G. Schulte, “Fuel Regression and Flame Stabilization Studies of Solid-Fuel Ramjets,” J. Propul. Power 2 (4), (1986).

    Article  Google Scholar 

  56. G. Schulte, R. Pein, and A. Hogl, “Temperature and Concentration Measurements in a Solid-Fuel Ramjet Combustion Chamber,” J. Propul. 3 (2), (1987).

    Article  Google Scholar 

  57. P. Korting, H. Schoyer, and Y. Timnat, “Advanced Hybrid Rocket Motor Experiments,” Acta Astronaut. 15 (2), 97–104 (1987).

    Article  ADS  Google Scholar 

  58. C. Carmicino and S. A. Russo, “Performance Comparison between Two Different Injector Configurations in a Hybrid Rocket,” Aerospace Sci. Technol. 11, 61–67 (2007).

    Article  Google Scholar 

  59. L. T. DeLuca, L. Galfetti, F. Maggi, et al., “Characterization of HTPB-Based Solid Fuel Formulations: Performance, Mechanical Properties, and Pollution,” Acta Astronaut. 92, 150–162 (2013).

    Article  ADS  Google Scholar 

  60. P. Tadini, C. Paravan, and L. T. DeLuca, “Ballistic Characterization of Mettallized HTPB-Based Fuels with Swirling Oxidizer in Lab-Scale Hybrid Burner,” in Proc. 9th Int. Conf. on High Energy Materials (HEMs-2013) (Sagamihara, Japan, 2013), pp. 1–9.

    Google Scholar 

  61. V. E. Zarko and K. K. Kuo, “Critical Review of Methods for Regression Rate Measurements of Condensed Phase Systems,” in Non-Intrusive Combustion Diagnostics, Ed. by K. K. Kuo and T. Parr (Begel House, New York, 1994), pp. 600–623.

    Google Scholar 

  62. M. Chiaverini, N. Serin, D. K. Johnson, et al., “Regression Rate Behavior of Hybrid Rocket Solid Fuels,” J. Propul. Power 16 (1), 125–132 (2000).

    Article  Google Scholar 

  63. B. Evans et al., “Characterization of Nano-Sized Energetic Particle Enhancement of Solid-Fuel Burning Rates in an X-ray Transparent Hybrid Rocket Engine,” AIAA Paper No. 2004-3821 (2004).

    Book  Google Scholar 

  64. B. Evan, N. A. Favorito, E. Boyer, et al., “Characterization of Solid Fuel Mass Burning Enhancement Utilizing an X-ray Transparent Hybrid Rocket Motor,” in Advancements in Energetic Materials and Chemical Propulsion, Ed. by K. K. Kuo and J. de R. Rivera (Begell House, New York, 2007), pp. 705–724.

    Google Scholar 

  65. J. Y. Lestrade, “Liquefying Fuel Regression Rate Modeling in Hybrid Propulsion,” Aerospace Sci. Technol. 42, 80–87 (2015).

    Article  Google Scholar 

  66. C. Paravan, A. Reina, A. Sossi, et al., “Time-Resolved Regression Rate of Innovative Hybrid Solid Fuel Formulations,” Prog. Propul. Phys., No. 4, 75–98 (2013); DOI: 10.1051/eucass/201304075.

    Article  Google Scholar 

  67. A. Gany, “Accomplishments and Challenges in Solid Fuel Ramjets and Scramjets,” Int. J. Energ. Mater. Chem. Propul. 8 (5), 421–446 (2009).

    Google Scholar 

  68. A. Rekakavas, L. Litterio, M. Boiocchi, and L. Galfetti, “Experimental Visualizations of Entrainment Phenomena in Wax-Based Fuels for Hybrid Space Propulsion,” in 6th Europ. Conf. for Aerospace Sciences (Krakow, 2015), FP EUCASS-569.

    Google Scholar 

  69. V. V. Perov, V. E. Zarko, and C. Zhukov, “New Microwave Method for Measuring Unsteady Mass Gasification Rate of Condensed Systems,” Fiz. Goreniya Vzryva 50 (6), 130–133 (2014) [Combust., Expl., Shock Waves 50 (6), 739–741 (2014)].

    Google Scholar 

  70. V. Perov, V. Zarko, V. Zvegintsev, and D. Nalivaichenko, “New Method for Measuring Transient Mass Gasification Rate of Condensed Systems,” in Proc. 56th Israel Ann. Conf. on Aerospace Sciences, Tel Aviv, March 9–10, 2016, WeL2T5.3.

    Google Scholar 

  71. I. S. Tseng and V. Yang, “Combustion of a Double-Base Homogeneous Propellant in a Rocket Motor,” Combust. Flame 96, 325–342 (1994).

    Article  Google Scholar 

  72. S. Apte and V. Yang, “Unsteady Flow Evolution and Combustion Dynamics of Homogeneous Solid Propellant in a Rocket Motor,” Combust. Flame 131, 110–131 (2002).

    Article  Google Scholar 

  73. W. D. Cai, P. Thakre, and V. Yang, “A Model of AP/HTPB Composite Propellant Combustion in Rocket Motor Environments,” Combust. Sci. Technol. 180, 2143–2169 (2008).

    Article  Google Scholar 

  74. D. Pastrone, “Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines,” Int. J. Aerospace Eng. (2012); Article ID 649753; http://dx.doi.org/10.1155/2012/649753.

    Google Scholar 

  75. https://ru.wikipedia.org/wiki/SpaceShipOne.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Zharova.

Additional information

Original Russian Text © V.A. Arkhipov, V.E. Zarko, I.K. Zharova, A.S. Zhukov, E.A. Kozlov, D.D. Aksenenko, A.V. Kurbatov

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 5, pp. 3–22, September–October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, V.A., Zarko, V.E., Zharova, I.K. et al. Solid propellant combustion in a high-velocity cross-flow of gases (review). Combust Explos Shock Waves 52, 497–513 (2016). https://doi.org/10.1134/S0010508216050014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216050014

Keywords

Navigation