Skip to main content
Log in

Combustion heat of the Al/B powder and its application in metallized explosives in underwater explosions

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

An underwater explosion test is used to determine the detonation properties of metallized explosives containing aluminum and boron powders. An oxygen bomb calorimeter (PARR 6200 calorimeter, Parr Instrument Company, USA) is used to obtain the heat of combustion of the metal mixtures. As the content of boron powders is increased, the heat of combustion of the metal mixtures increases, and the combustion efficiency of boron decreases. The highest value of the combustion heat is 38.2181 MJ/kg, with the boron content of 40%. All metallized explosive compositions (RDX/Al/B/AP) have higher detonation energy (including higher shock wave energy and bubble energy) in water than the TNT charge. The highest total useful energy is 6.821 MJ/kg, with the boron content of 10%. It is 3.4% higher than the total energy of the RDX/Al/AP composition, and it is 2.1 times higher than the TNT equivalent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Wildegger-Gaissmaier, “Aspects of Thermobaric Weaponry,” Mili. Tech. 28 6, 125–126 (2004).

    Google Scholar 

  2. N. H. Yen and L. Y. Wang, “Reactive Metals in Explosives,” Propell., Explos., Pyrotech. 37 2, 143–155 (2012).

    Article  Google Scholar 

  3. M. A. Cook, A. S. Filler, and R. T. Keyes, “Aluminized Explosives,” J. Phys. Chem. 61 2, 189–196 (1957).

    Article  Google Scholar 

  4. P. Brousseau, H. E. Dorsett, M. D. Cliff, et al., “Detonation Properties of Explosives Containing Nanometric Aluminum Powder,” in 12th Int. Detonation Symp. (2002).

    Google Scholar 

  5. A. Lefrancois, G. Baudin, and C. L. Gallic, “Coudoing, Nanometric Aluminum Powder Influence on the Detonation Efficiency of Explosives,” in 12th Int. Detonation Symp. (2002).

    Google Scholar 

  6. M. F. Gogulya, A. Y. Dolgoborodov, M. N. Makhov, et al., “Detonation Performance of Aluminized Compositions Based on BTNEN,” in 12th Int. Detonation Symp. (2002).

    Google Scholar 

  7. P. Brousseau and M. Cliff, “The Effect of Ultrafine Aluminium Powder on the Detonation Properties of Various Explosives,” in 32th Int. Annu. Conf. of ICT (Karlsruhe, 2001).

    Google Scholar 

  8. W. A. Trzcinski and S. Cudzilo, and L. Szymánczyk, “Studies of Detonation Characteristics of Aluminum Enriched RDX Compositions,” Propell., Explos., Pyrotech. 32 5, 392–400 (2007).

    Article  Google Scholar 

  9. W. A. Trzcinski, S. Cudzilo, and J. Paszula, “Studies of Free Field and Confined Explosions of Aluminium Enriched RDX Compositions,” Propell., Explos., Pyrotech. 32 5, 502–508 (2007).

    Article  Google Scholar 

  10. R. Schaefer and S. M. Nicolich, “Development and Evaluation of New High Blast Explosives,” in 36th Int. Annu. Conf. of ICT (Karlsruhe, 2005).

    Google Scholar 

  11. S. H. Fischer and M. C. Grubelich, The Use of Combustible Metals in Explosive Incendiary Devices (Sandia National Lab., 1996).

    Google Scholar 

  12. S. H. Fischer and M. C. Grubelich, “Explosive Dispersal and Ignition of Combustible Metals and Thermite Formulations,” in 46th Annu. Bomb and Warhead Tech. Symp. (1996).

  13. P. E. Anderson, P. Cook, A. Davis, et al.. “Silicon Fuel in High Performance Explosives,” Propell., Explos., Pyrotech. 39 1, 74–78 (2014).

  14. K. Kuo, K. Editors, and R. Pein, Combustion of Boron-Based Solid Propellants and Solid Fuels (Begell House, 1993).

    Google Scholar 

  15. A. Maćek and J. M. Semple, “Combustion of Boron Particles at Elevated Pressure,” in Proc. of 13th Symp. (Int.) Combust. (1971). pp. 859–868.

    Google Scholar 

  16. A. Maćek and J. M. Semple, “Combustion of Boron Particles Atatmospheric Pressure,” Combust. Sci. Technol. 1 3, 181–191 (1969).

    Article  Google Scholar 

  17. A. Maćek, “Combustion of Boron Particles: Experiment and Theory,” Symp. Combust. Proc. 1401–1411 (1973).

    Google Scholar 

  18. J. G. Speight, Lange’s Handbook of Chemistry (McGraw-Hill, New York, 2005).

    Google Scholar 

  19. E. C. Koch and T. M. Klapötke, “Boron-Based High Explosives,” Propell., Explos., Pyrotech. 37 3, 335–344 (2012).

    Article  Google Scholar 

  20. M. Makhov, “Explosion Heat of Boron-Containing Explosive Composition,” in 35th Int. Annu. Conf. of ICT (Karlsruhe, 2004).

    Google Scholar 

  21. K. Lee K. Lee, and J. Kim, “Relationship between Combustion Heat and Blast Performance of Aluminized Explosives,” in 36th Int. Annu. Conf. of ICT (Karlsruhe, 2005).

    Google Scholar 

  22. ASTM D240-02. Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (2007).

  23. T. Katsume, “Precisely Measure Explosive Energy Using Explosive Underwater Method,” Kogyo Kayakua 4 4, 239–245 (1981).

    Google Scholar 

  24. G. Bjarnholt and R. Holmberg, “Explosive Expansion Works in Underwater Detonations,” in Proc. 6th Symp. on Detonation (1976).

    Google Scholar 

  25. A. B. Arons and D. R. Yennie, “Energy Partition in Underwater Explosion Phenomena,” Rev. Mod. Phys. 20 3, 519–535 (1948).

    Article  ADS  Google Scholar 

  26. M. M. Swisdak, “Explosion Effects and Properties. Pt II: Explosion Effects in Water,” DTIC Document (1978).

    Google Scholar 

  27. R. H. Cole, Underwater Explosions (Princeton Univ. Press, Princeton, 1948).

    Book  Google Scholar 

  28. M. B. John, “Numerical Modelling of Shock Wave and Pressure Pulse Generation by Underwater Explosions,” Tech. Report No. DSTO-TR-0677 (Australian, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Xu.

Additional information

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 3, pp. 97–104, May–June, 2016. Original article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Chen, Y., Chen, X. et al. Combustion heat of the Al/B powder and its application in metallized explosives in underwater explosions. Combust Explos Shock Waves 52, 342–349 (2016). https://doi.org/10.1134/S001050821603014X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050821603014X

Keywords

Navigation