Skip to main content
Log in

Electrical resistance of copper under shock compression: Experimental data

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The electrical resistance of copper foil under shock compression is measured. The electrical resistance and electrical conductivity are plotted as functions of the shock pressure in the interval up to 20 GPa. These dependences are monotonic and have no visible inflections or singularities. A qualitative dependence of the electrical resistance of the metal on the shock impedance of the material of the block containing the sample is found. A comparison of the data obtained in this study with results of other authors shows that it is important to take into account the block material, the shape and thickness of the sample, and the procedure of determining the state of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. N. Keeler, “Electrical Conductivity of Condensed Media at High Pressures,” in Physics of High Energy Density, Ed. by P. Caldirola and H. Knoepfel (Academic Press, New York, 1971).

    Google Scholar 

  2. S. S. Nabatov, V. A. Borisenok, A. M. Molodets, and E. Z. Novitskii, Electrical Phenomena in Shock Waves (Institute of Exp. Phys., Russian Federal Nuclear Center, Sarov, 2005) [in Russian].

    Google Scholar 

  3. Yu. D. Bakulin, V. F. Kuropatenko, and A. V. Luchinskii, “Magnetohydrodynamic Calculation of Exploding Conductors,” Zh. Tekh. Fiz. 46 (9), 1963–1969 (1976).

    Google Scholar 

  4. N. B. Volkov, “Plasma Model of Conductivity of Metals,” Zh. Tekh. Fiz. 49 (9), 2000–2002 (1979).

    Google Scholar 

  5. Y. T. Lee and R. M. More, “An Electron Conductivity Model for Dense Plasmas,” Phys. Fluids 27 (5), 1273–1286 (1984).

    Article  ADS  MATH  Google Scholar 

  6. R. J. Zollweg and R. W. Liebermann, “Electrical Conductivity of Nonideal Plasmas,” J. Appl. Phys. 62, 3621–3628 (1987).

    Article  ADS  Google Scholar 

  7. T. J. Burgess, “Electrical Resistivity Model for Metals,” in Megagauss Technology and Pulse Power Applications, Proc. of 4th Int. Conf. on Megagauss Magnetic Field Generation and Related Topics, Santa Fe, 1986, Ed. by C. M. Fowler, R. S. Caird, and D. J. Erickson (Plenum Press, New York, 1987), pp. 307–316.

    Google Scholar 

  8. I. M. Bespalov and A. Ya. Poleshchuk, “Method of Calculating the Degree of Ionization of Thermal and Electrical Conductivity of the Plasma in a Wide Range of Densities and Temperatures,” Pis’ma Zh. Tekh. Fiz. 15 (2), 4–8 (1989).

    Google Scholar 

  9. S. F. Garanin and V. I. Mamyshev, “Cooling of a Magnetized Plasma at a Boundary with an Exploding Metal Wall,” Prikl. Mekh. Tekh. Fiz. 31 (1), 30–37 (1990). [J. Appl. Mech. Tech. Phys. 31 (1), 28–34 (1990).]

    Google Scholar 

  10. J. J. Dick and D. L. Styris, “Electrical Resistivity of Silver Foils under Uniaxial Shock-Wave compression,” J. Appl. Phys. 46 (4), 1602–1617 (1975).

    Article  ADS  Google Scholar 

  11. S. D. Gilev and A. M. Trubachev, “Metallization of Silicon in a Shock Wave: Metallization Threshold and Ultrahigh Defect Densities,” J. Phys.: Condensed Matter 16 (46), 8139–8153 (2004).

    ADS  Google Scholar 

  12. A. M. Molodets and A. A. Golyshev, “Thermal Conductivity of Indium at High Pressures and Temperatures of Shock Compression,” Fiz. Tverd. Tela 51 (2), 213–216 (2009).

    Google Scholar 

  13. G. I. Kanel’, “Application of Manganin Gauges for Measuring the Pressure of Shock Compression of Condensed Media,” Preprint (Joint Institute of Chemical Physics, Academy of Sciences of the USSR, Chernogolovka, 1973).

    Google Scholar 

  14. D. D. Bloomquist and S. A. Sheffield, “Shock-Compression Temperature Rise in Polymethyl Methacrylate Determined from Resistivity of Embedded Copper Foils,” Appl. Phys. Lett. 38 (3), 185–187 (1981).

    Article  ADS  Google Scholar 

  15. Z. Rosenberg and Y. Partom, “Direct Measurement of Temperature in Shock-Loaded Polymethylmethacrylate with Very Thin Copper Thermistors,” J. Appl. Phys. 56 (7), 1921–1926 (1984).

    Article  ADS  Google Scholar 

  16. E. Yu. Tonkov and E. G. Ponyatovsky, Phase Transformations of Elements under High Pressure (CRC Press, 2005).

    Google Scholar 

  17. R. E. Duff, “Materials Properties at High Pressure,” in Properties of Matter under Unusual Conditions, Ed. by H. Mark and S. Fernbach (New York, 1969), pp. 73–104.

    Google Scholar 

  18. A. I. Goncharov and V. N. Rodionov, “Electrical Resistance of Copper and Aluminum under Shock Wave Loading,” in Lavrent’ev Readings in Mathematics, Mechanics, and Physics, Proc. II All-Union Conf., Book of Abstracts (Kiev, 1985), pp. 72–73.

    Google Scholar 

  19. A. C. Mitchell and R. N. Keeler, “The Electrical Conductivity of Copper and Aluminum at High Temperatures and Pressures,” in Megagauss Technology and Pulsed Power Applications, Proc. 4th Int. Conf. on Megagauss Magnetic Fields Generation and Related Topics, Santa Fe, 1986, Ed. by C. M. Fowler, R. S. Caird, and D. J. Erickson (Plenum Press, New York–London, 1987), pp. 317–321.

    Google Scholar 

  20. Yu. N. Zhugin and Yu. L. Levakova, “Effect of the Conductance and Thickness of a Conducting Plate on the Signal from a Material-Velocity Inductive Transducer,” Prikl. Mekh. Tekh. Fiz. 41 (6), 199–209 (2000). [J. Appl. Mech. Tech. Phys. 41 (6), 1136–1149 (2000).]

    MATH  Google Scholar 

  21. M. A. Gulevich, “Measurement of Electrical Conductivity of Copper under Impulsive Loading,” Fiz. Goreniya Vzryva 47 (6), 110–116 (2011). [Combust., Expl., Shock Waves 47 (6), 715–720 (2011).]

    Google Scholar 

  22. S. D. Gilev, “Measurement of Electrical Conductivity of Condensed Substances in Shock Waves (Review),” Fiz. Goreniya Vzryva 47 (4), 2–23 (2011). [Combust., Expl., Shock Waves 47 (4), 375–393 (2011).]

    Google Scholar 

  23. I. K. Kikoin, Tables of Physical Quantities, (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  24. L. V. Al’tshuler, A. A. Bakanova, I. P. Dudoladov, et al., “Shock Adiabatic Curves of Metals. New Data, Statistical Analysis, and General Laws,” Prikl. Mekh. Tekh. Fiz. 22 (2), 3–34 (1981). [J. Appl. Mech. Tech. Phys. 22 (2), 145–169 (1981).]

    Google Scholar 

  25. R. F. Trunin, L. F. Gudarenko, M. V. Zhernokletov, and G. V. Simakov, Experimental Data on Shock Wave Compression and Adiabatic Expansion of Condensed Substances (Inst. of Exp. Phys., Russian Federal Nuclear Center, Sarov, 2006) [in Russian].

    Google Scholar 

  26. R. G. McQueen, S. P. Marsh, J. W. Taylor, et al., “The Equation of State of Solids from Shock Wave Studies,” in High Velocity Impact Phenomena, Ed. by R. Kinslow (Academic Press, New York, 1970).

    Google Scholar 

  27. Physics of Explosion, Ed. by K. P. Stanyukovich, (Nauka, Moscow, 1975) [in Russian].

  28. Pu Fn, Ding Yz, and Guo Qq, “The Pressure-Dependence of Electrical Resistances for Iron, Nickel and Copper,” Science in China (Scientia Sinica). Ser. A. Mathematics, Physics, Astronomy 36 (3), 333–337 (1993).

    Google Scholar 

  29. S. D. Gilev and V. S. Prokop’ev, “Electrical Resistance of High-Pressure Phases of Tin under Shock Compression,” Fiz. Goreniya Vzryva 51 (4), 94–100 (2015). [Combust., Expl., Shock Waves 51 (4), 482–487 (2015).]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Gilev.

Additional information

Original Russian Text © S.D. Gilev, V.S. Prokop’ev.

Published in Fizika Goreniya i Vzryva, Vol. 52, No. 1, pp. 121–130, January–February, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilev, S.D., Prokop’ev, V.S. Electrical resistance of copper under shock compression: Experimental data. Combust Explos Shock Waves 52, 107–116 (2016). https://doi.org/10.1134/S0010508216010159

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508216010159

Keywords

Navigation