Skip to main content
Log in

Thermodynamic model of a rotating detonation engine

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The conventional Zel’dovich-von Neumann-Döring (ZND) detonation theory is modified with two-dimensional velocity vectors to account for the performance and steady-state flow features of a rotating detonation engine. The developed analytical model explains many of the steady-state features of the rotating detonation and its thermodynamics. The generation of swirl is shown to be the primary mechanism of energy transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Voitsekhovskii, “Maintained Detonation,” Dokl. Akad. Nauk SSSR 4(6), 1207–1209 (1959).

    MATH  Google Scholar 

  2. J. A. Nicholls and R. E. Cullen, The Feasibility of a Rotating Detonation Wave Rocket Motor: Final Report (Univ. of Mich. Ann Arbor, MI, 1964).

    Google Scholar 

  3. F. A. Bykovskii and V. V. Mitrofanov, “Detonation Combustion of a Gas Mixture in a Cylindrical Chamber,” Fiz. Goreniya Vzryva 16(5), 107–117 (1980) [Combust., Expl., Shock Waves 16 (5), 570–578 (1980)].

    Google Scholar 

  4. S. A. Zhdan, A. M. Mardashev, and V. V. Mitrofanov, “Calculation of the Flow of Spin Detonation in an Annular Chamber,” Fiz. Goreniya Vzryva 26(2), 91–95 (1990) [Combust., Expl., Shock Waves 26 (2), 210–214 (1990)].

    Google Scholar 

  5. F. A. Bykovskii, S. A. Zhdan, and E. F. Vedernikov, “Continuous Spin Detonations,” J. Propul. Power 22(6), 1204–1216 (2006).

    Article  Google Scholar 

  6. M. Hishida, T. Fujiwara, and P. Wolanski, “Fundamentals of Rotating Detonations,” Shock Waves 19, 1–10 (2009).

    Article  MATH  ADS  Google Scholar 

  7. E. M. Braun, F. K. Lu, D. R. Wilson, and J. A. Camberos, “Airbreathing Rotating Detonation Wave Engine Cycle Analysis,” Aerosp. Sci. Technol. 27(1), 1–8 (2013).

    Article  Google Scholar 

  8. K. Kailasanath, “The Rotating-Detonation-Wave Engine Concept: A Brief Status Report,” in 49th AIAA Aerospace Sci. Meeting, AIAA2011-580 (2011), pp. 1–8.

    Google Scholar 

  9. P. Wolanski, “Detonative Propulsion,” Proc. Combust. Inst. 34(1), 125–158 (2013).

    Article  Google Scholar 

  10. Y. A. C, Thermodynamics: An Engineering Approach (McGraw-Hill, Boston, 2008).

    Google Scholar 

  11. M. A. Saad, Compressible Fluid Flow (Prentice Hall, Upper Saddle River, 1993).

    MATH  Google Scholar 

  12. J. H. S. Lee, The Detonation Phenomenon (Cambridge Univ. Press, New York, 2008).

    Book  Google Scholar 

  13. D. A. Schwer and K. Kailasanath, “Numerical Investigation of the Physics of Rotating-Detonation-Engines,” Proc. Combust. Inst. 33(2), 2195–2202 (2011).

    Article  Google Scholar 

  14. D. A. Schwer and K. Kailasanath, “Numerical Study of the Effects of Engine Size on Rotating Detonation Engines,” in 49th AIAA Aerospace Sciences Meeting, AIAA 2011-581 (2011), pp. 1–13.

    Google Scholar 

  15. S. L. Dixon, Fluid Mechanics, Thermodynamics of Turbomachinery (Elsevier Butterworth-Heinemann, Amsterdam, 1998).

    Google Scholar 

  16. H. B. Urbach, Some Implications of a Differential Turbomachinery Equation With Viscous Correction (Naval Surface Warfare Center, Carderock Div., 1993).

    Google Scholar 

  17. F. A. Lyman, “On the Conservation of Rothalpy in Turbomachines,” J. Turbomach. 115(3), 520–526 (1993).

    Article  Google Scholar 

  18. C. A. Nordeen, D. A. Schwer, F. Schauer, J. Hoke, B. Cetegen, and T. Barber, “Energy Transfer in a Rotating Detonation Engine,” in 47th AIAA Joint Propulsion Conference, AIAA 2011-6045 (2011), pp. 1–17.

    Google Scholar 

  19. D. A. Schwer and K. Kailasanath, “Effect of Inlet on Fill Region and Performance of Rotating Detonation Engines,” in 47th AIAA Joint Propulsion Conference, AIAA 2011-6044 (2011), pp. 1–17.

    Google Scholar 

  20. C. A. Nordeen, D. Schwer, F. Schauer, J. Hoke, B. Cetegen, and T. Barber, “Inlet Effects on the Thermodynamics of a Totating Detonation Engine,” in 7th US National Combustion Meeting (2011), pp. 1–11.

    Google Scholar 

  21. E. Wintenberger and J. E. Shepherd, “Stagnation Hugoniot Analysis for Steady Combustion Waves in Propulsion Systems,” J. Propuls. Power 22(4), 835–844 (2006).

    Article  Google Scholar 

  22. D. A. Schwer and K. Kailasanath, “Numerical Investigation of Rotating Detonation Engines,” in 46th AIAA Joint Propulsion Conference (2010), pp. 1–15.

    Google Scholar 

  23. D. A. Schwer and K. Kailasanath, “Thermodynamic Properties of a Rotating Detonation Engine,” in 7th US National Combustion Meeting (2011), pp. 1–9.

    Google Scholar 

  24. A. K. Henrick, T. D. Aslam, and J. M. Powers, “Simulations of Pulsating One-Dimensional Detonations with True Fifth Order Accuracy,” J. Comput. Phys. 213(1), 311–329 (2006).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. A. K. Hayashi, Y. Kimura, and T. Yamada, “Sensitivity Analysis of Rotating Detonation Engine with a Detailed Reaction Model,” in 47th AIAA Aerospace Sciences Meeting, AIAA 2009-633 (2009), pp. 1–9.

    Google Scholar 

  26. P. G. Hill and C. R. Peterson, Mechanics and Thermodynamics of Propulsion (Addison-Wesley, Reading, 1992).

    Google Scholar 

  27. C. A. Nordeen, “Thermodynamics of a Rotating Detonation Engine,” Doctoral Dissertation (2013); http://digitalcommons.uconn.edu/dissertations/277.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Nordeen.

Additional information

Original Russian Text © C.A. Nordeen, D. Schwer, F. Schauer, J. Hoke, Th. Barber, B. Cetegen.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 5, pp. 75–86, September–October, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nordeen, C.A., Schwer, D., Schauer, F. et al. Thermodynamic model of a rotating detonation engine. Combust Explos Shock Waves 50, 568–577 (2014). https://doi.org/10.1134/S0010508214050128

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508214050128

Keywords

Navigation