Skip to main content
Log in

Effect of initial air pressure on the detonation activity of an explosive aerosuspension

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The effect of air pressure (0.01–0.3 MPa) on the detonatability of an aerosuspension of secondary explosive particles at a low mean volume density of the explosive (0.14–1.28 mg/cm3) is experimentally studied. The structure and basic parameters of detonation depending on the explosive density and initial gas pressure are determined, and the mechanism of low-velocity detonation propagation in explosive aerosuspensions is revealed. The lower concentration limits of detonation at different initial gas pressures are found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. V. Voytsekhovskii, V. V. Mitrofanov, and M. E. Topchiyan, Detonation Front Structure in Gases (Izd. Sib. Otd. Akad. Nauk SSSR, Novosibirsk, 1963) [in Russian].

    Google Scholar 

  2. A. V. Pinaev and V. A. Subbotin, “Reaction Zone Structure in Detonation of Gas-Film Type Systems,” Fiz. Goreniya Vzryva 18(5), 103–111 (1982) [Combust., Expl., Shock Waves 18 (5), 585–591 (1982)].

    Google Scholar 

  3. A. V. Pinaev, “Measurement of Pressure Behind a Detonation Wave Front in a Heterogeneous Gas-Film System,” Fiz. Goreniya Vzryva 19(1), 105–111 (1983) [Combust., Expl., Shock Waves 25 (4), 448–458 (1989)].

    Google Scholar 

  4. A. V. Pinaev and G. A. Lyamin, “Fundamental Laws Governing Subsonic and Detonating Gas Combustion in Inert Porous Media,” Fiz. Goreniya Vzryva 25(4), 75–85 (1989) [Combust., Expl., Shock Waves 25 (4), 448–458 (1989)].

    Google Scholar 

  5. A. V. Pinaev, G. A. Lamin, “Structure of Gas-Film and Gas Detonation in an Inert Porous Medium,” Fiz. Goreniya Vzryva 28(5), 97–102 (1992) [Combust., Expl., Shock Waves 28 (5), 539–544 (1992)].

    Google Scholar 

  6. R. I. Nigmatulin, P. B. Vainshteyn, and I. Sh. Akhatov, “Structure of Stationary Detonation Waves in Gas Mixtures with Monopropellant Particles,” in Detonation (Inst. Organ. Khimii Akad. Nauk SSSR, Chernogolovka, 1980), pp. 96–99 [in Russian].

    Google Scholar 

  7. I. Sh. Akhatov, P. B. Vainshteyn, and R. I. Nigmatulin, “Structure of Detonation Waves in Monopropellant Gas Suspensions,” Izv. Akad. Nauk SSSR, Mekh. Zhid. Gaza, No. 5, 47–53 (1981).

    Google Scholar 

  8. S. A. Zhdan, “Detonation Wave Structure in a Vacuum with Unitary Fuel Particles,” Fiz. Goreniya Vzryva 27(6), 109–115 (1991) [Combust., Expl., Shock Waves 27 (6), 750–756 (1991)].

    Google Scholar 

  9. S. A. Zhdan, “Nonshock Initiation of Detonation in Vacuum with Unitary-Fuel Particles,” Fiz. Goreniya Vzryva 28(4), 136–142 (1992) [Combust., Expl., Shock Waves 28 (4), 446–451 (1992)].

    Google Scholar 

  10. S. A. Zhdan, “Initiation of Divergent Detonation in a Vacuum Containing Monofuel Particles,” Fiz. Goreniya Vzryva 29(5), 66–71 (1993) [Combust., Expl., Shock Waves 29 (5), 614–619 (1993)].

    Google Scholar 

  11. S. A. Zhdan, “Limits of Detonation Propagation in a Suspension of Propellant Particles in Vacuum in a Tube,” Fiz. Goreniya Vzryva 30(2), 76–84 (1994) [Combust., Expl., Shock Waves 30 (2), 209–216 (1994)].

    Google Scholar 

  12. S. A. Zhdan and E. S. Prokhorov, “Initiation of Detonation in Vacuum Suspensions of RDX Particles,” Fiz. Goreniya Vzryva 34(4), 65–71 (1998) [Combust., Expl., Shock Waves 34 (4), 426–432 (1998)].

    Google Scholar 

  13. A. V. Pinaev and G. A. Lyamin, “Low-Velocity Detonation in an Evacuated Porous Medium,” Dokl. Akad. Nauk 325(3), 498–501 (1992).

    Google Scholar 

  14. V. V. Mitrofanov and I. T. Bakirov, “Detonation in a Sensitive-Explosive Particle Suspension Number Vacuum,” Fiz. Goreniya Vzryva 30(2), 122–124 (1994) [Combust., Expl., Shock Waves 30 (2), 254–256 (1994)].

    Google Scholar 

  15. V. V. Mitrofanov and V. A. Subbotin, “Spin Detonation of Sprayed Layers of Explosives in Evacuated Tubes,” Dokl. Akad. Nauk 363(2), 191–194 (1998).

    Google Scholar 

  16. A. V. Pinaev, “Detonation of Secondary Explosives in a Vacuum Suspension,” Fiz. Goreniya Vzryva 37(2), 103–108 (2001) [Combust., Expl., Shock Waves 37 (2), 214–218 (2001)].

    Google Scholar 

  17. A. A. Borisov, B. A. Khasainov, and P. V. Komissarov, “Blast Waves in the Systems ”Suspension or Layer of an Energetic Material in Air,” Khim. Fiz. 23(4), 95–108 (2004).

    Google Scholar 

  18. A. V. Pinaev, “Wave Structure and Detonation Mechanism of Low-Density Secondary Explosives in an Evacuated and Gas-Filled Inert Porous Medium,” Dokl. Akad. Nauk 424(5), 614–619 (2009).

    Google Scholar 

  19. A. V. Pinaev, “Influence of the Initial Gas Pressure on the Detonation Limits and Parameters of Low-Density Secondary Explosives in an Inert Porous Medium,” Fiz. Goreniya Vzryva 45(3), 106–117 (2009) [Combust., Expl., Shock Waves 45 (3), 331–341 (2009)].

    Google Scholar 

  20. A. V. Pinaev, “Low-Density Secondary Explosive Detonation in an Evacuated and Gas-Filled Porous Medium,” in Dynamics of Continuous Media, Vol. 126: Acoustics of Inhomogeneous Media (Lavrent’ev Inst. of Hydrodynamics, Sib. Branch, Russian Acad. of Sci., Novosibirsk, 2010), pp. 122–128.

    Google Scholar 

  21. A. V. Pinaev, “Low-Speed Low-Density Secondary Explosive Detonation in Evacuated and Gas-Filled Media,” in High Energy Density Physics, Proc. Zababakhin Scientific Readings, Snezhinsk, March 15–19, 2010; http://www.vniitf.ru/.

  22. A. V. Pinaev, A. A. Vasil’ev, and I. I. Kochetkov, “Influence of the Explosive Type, Its Density, and External Conditions on the Detonation Wave Propagation Mechanism and Structure,” in Abstracts of Lavrent’ev Readings on Mathematics, Mechanics, and Physics, August 23–27, 2010 (Lavrent’ev Inst. of Hydrodynamics, Sib. Branch, Russian Acad. of Sci., Novosibirsk, 2010).

    Google Scholar 

  23. A. V. Pinaev and I. I. Kochetkov, “About the Influence of the Gas Phase on Detonation of Low-Density HE,” in Abstracts of XV Int. Conf. on the Methods of Aerophysical Research, November 1–6, 2010, Novosibirsk, Russia, Part I (Parallel, Novosibirsk, 2010), pp. 209–210.

    Google Scholar 

  24. A. V. Pinaev and G. A. Lyamin, “Piezoelectric Pressure Sensors, Methods of Calibration,” Prib. Tekh. Eksp., No. 2, 236–239 (1992).

    Google Scholar 

  25. R. I. Nigmatulin, Dynamics of Multiphase Media, Part I (Nauka, Moscow, 1987; Hemisphere, New York, 1991).

    Google Scholar 

  26. F. P. Lee, C. W. Kauffman, M. Sichel, and J. A. Nicholls, “Detonability of RDX Dust in Air/Oxygen Mixtures,” AIAA J. 24(11), 1811–1816 (1986).

    Article  ADS  Google Scholar 

  27. A. G. Kutushev and S. P. Rodionov, “Plane Detonation Waves in Monofuel Gas Suspensions with a Spatially Inhomogeneous Particle Distribution,” Fiz. Goreniya Vzryva 34(5), 103–110 (1998) [Combust., Expl., Shock Waves 34 (5), 573–580 (1998)].

    Google Scholar 

  28. S. A. Zhdan and E. S. Prokhorov, “Detonation of an RDX Particle Suspension Partially Filling a Cylindrical Bore,” Fiz. Goreniya Vzryva 35(4), 79–87 (1999) [Combust., Expl., Shock Waves 35 (4), 422–429 (1999)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pinaev.

Additional information

Original Russian Text © A.V. Pinaev, P.A. Pinaev.

Published in Fizika Goreniya i Vzryva, Vol. 50, No. 4, pp. 66–77, July–August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinaev, A.V., Pinaev, P.A. Effect of initial air pressure on the detonation activity of an explosive aerosuspension. Combust Explos Shock Waves 50, 429–440 (2014). https://doi.org/10.1134/S001050821404011X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050821404011X

Keywords

Navigation