Skip to main content
Log in

A Meta-Analysis of Cardiovascular Adaptive Responses to Temperature Variations in Normotensive Rats

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—In this paper we focus on a meta-analysis where the data from studies using rat models are combined to evaluate the effects of hypothermia and hyperthermia on the cardiovascular function. For this meta-analysis, 25 articles from the PubMed database were selected. The research aim of these reports was to investigate how whole-body hypothermia and hyperthermia in normotensive conscious adult rats affect hemodynamic parameters (systemic blood pressure and heart rate). The effects of short-term severe hyperthermia (40–43°C), prolonged moderate hyperthermia (32–34°C), and short-term and prolonged hypothermia (4–9°C, sudden and gradual, with and without any changes in photoperiod) were investigated. It has been shown that the blood pressure and heart rate patterns in normotensive conscious rats in response to a change in the ambient temperature are determined according not only to the vector field showing the direction of temperature change, but also to the amplitude, suddenness, duration of the change, and concomitant conditions (e.g., the duration of photoperiod).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. B. G. Lovegrove, J. Comp. Physiol. B 175 (4), 231 (2005).

    Article  Google Scholar 

  2. D. Deveci and S. Egginton, J. Physiol. Sci. 57 (1), 73 (2007).

    Article  Google Scholar 

  3. M. Tanaka, Y. Ootsuka, M. J. McKinley, and R. M. McAllen, J. Physiol. 582 (Pt 1), 421 (2007).

    Article  Google Scholar 

  4. K. L. Marlatt and E. Ravussin, Curr. Obes. Rep. 6 (4), 389 (2017).

    Article  Google Scholar 

  5. S. A. Evans, A. D. Parsons, and J. M. Overton, J. Appl. Physiol. 99 (4), 1336 (2005).

    Article  Google Scholar 

  6. W. D. Knight, M. M. Witte, A. D. Parsons, et al., Mech. Ageing Dev. 132 (5), 220 (2011).

    Article  Google Scholar 

  7. J. A. Boulant and K. E. Bignall, Am. J. Physiol. 225 (6), 1371 (1973).

    Article  Google Scholar 

  8. M. J. Angilletta, J. P. Youngblood, L. K. Neel, and J. M. VandenBrooks, Neurosci. Lett. 692, 127 (2019).

    Article  Google Scholar 

  9. K. C. Kregel, J. M. Overton, D. G. Johnson, et al., J. Appl. Physiol. 71 (1), 192 (1991).

    Article  Google Scholar 

  10. C. V. Gisolfi, R. D. Matthes, K. C. Kregel, and R. Oppliger, J. Appl. Physiol. 70 (4), 1821 (1991).

    Article  Google Scholar 

  11. P. E. Papanek, C. E. Wood, and M. J. Fregly, J. Appl. Physiol. 71 (1), 300 (1991).

    Article  Google Scholar 

  12. Z. Hahn and Z. Szelenyi, Acta Physiol. Acad. Sci. Hung. 54 (3), 245 (1979).

    Google Scholar 

  13. L. I. Wang, F. Liu, Y. Luo, et al., Biomed. Rep. 3 (3), 425 (2015).

    Article  Google Scholar 

  14. J. A. Straw and M. J. Fregly, J. Appl. Physiol. 23 (6), 825 (1967).

    Article  Google Scholar 

  15. S. M. Barman, G. L. Gebber, and F. R. Calaresu, Am. J. Physiol. 247 (3, Pt. 2), R513 (1984).

    Google Scholar 

  16. M. J. Kenney, D. E. Claassen, M. R. Bishop, and R. J. Fels, Am. J. Physiol. 275 (6, Pt. 2), R1992 (1998).

    Google Scholar 

  17. D. S. O’Leary, J. M. Johnson, and W. F. Taylor, J. Appl. Physiol. 59 (5), 1533 (1985).

    Article  Google Scholar 

  18. Y. Ootsuka and R. M. McAllen, Am. J. Physiol. Regul. Integr. Comp. Physiol. 291 (3), R589 (2006).

    Article  Google Scholar 

  19. F. Richard, N. Faucon-Biguet, R. Labatut, et al., J. Neurosci. Res. 20 (1), 32 (1988).

    Article  Google Scholar 

  20. C. Garcia, P. Schmitt, P. D’Aleo, et al., J. Neurochem. 62 (3), 1172 (1994).

    Article  Google Scholar 

  21. M. P. Massett, S. J. Lewis, and K. C. Kregel, Am. J. Physiol. 275 (3, Pt 2), R844 (1998).

    Google Scholar 

  22. B. A. Bryar, M. J. Fregly, and F. P. Field, J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 55 (3), 823 (1983).

    Google Scholar 

  23. L. N. Maslov and N. V. Naryzhnaya, Ross. fFziol. Zh. im. I. M. Sechenova 101 (5), 525 (2015).

    Google Scholar 

  24. M. P. Massett, S. J. Lewis, H. M. Stauss, and K. C. Kregel, Am. J. Physiol. Regul. Integr. Comp. Physiol. 279 (4), R1282 (2000).

    Article  Google Scholar 

  25. Z. Sun, J. R. Cade, M. J. Fregly, and N. E. Rowland, Physiol. Behav. `62 (2), 379 (1997).

    Article  Google Scholar 

  26. S. Han, X. Chen, B. Cox, et al., Peptides 19 (2), 351 (1998).

    Article  Google Scholar 

  27. Z. Zukowska-Grojec and A. C. Vaz, Synapse 2 (3), 293 (1988).

    Article  Google Scholar 

  28. H. D. McCarthy, A. P. Kilpatrick, P. Trayhurn, and G. Williams, Neuroscience 54 (1), 127 (1993).

    Article  Google Scholar 

  29. L. Cassis, A. Laughter, M. Fettinger, et al., J. Pharmacol. Exp. Ther. 286 (2), 718 (1998).

    Google Scholar 

  30. J. F. Peng, B. Kimura, M. J. Fregly, and M. I. Phillips, Hypertension 31 (6), 1317 (1998).

    Article  Google Scholar 

  31. Z. Sun, R. Cade, Z. Zhang, et al., Hypertension 41 (2), 322 (2003).

    Article  Google Scholar 

  32. Z. Sun, X. Wang, C. E. Wood, and J. R. Cade, Am. J. Physiol. Regul. Integr. Comp. Physiol. 288 (2), R433 (2005).

    Article  Google Scholar 

  33. X. Wang, Z. Sun, and R. Cade, Kidney Int. 68 (2), 680 (2005).

    Article  Google Scholar 

  34. O. Shechtman, M. J. Fregly, P. van Bergen, and P. E. Papanek, Hypertension 17 (6, Pt 1),763 (1991).

    Article  Google Scholar 

  35. M. J. Fregly, F. Rossi, Van Bergen, et al., Pharmacology 46 (4), 198 (1993).

    Article  Google Scholar 

  36. Z. Sun., R. Cade, and C. Morales, Am. J. Hypertens. 15 (1, Pt 1), 85 (2002).

    Article  Google Scholar 

  37. K. C. Kregel, H. Stauss, and T. Unger, Am. J. Physiol. 266 (6, Pt 2), R1985 (1994).

    Google Scholar 

  38. G. F. Chen and Z. Sun, J. Appl. Physiol. 100 (5), 1719 (2006).

    Article  Google Scholar 

  39. A. Ortega Mateo and A. A. de Artinano, Pharmacol. Res. 36 (5), 339 (1997).

    Article  Google Scholar 

  40. Y. Matsumura, N. Hashimoto, S. Taira, et al., Hypertension 33 (2), 759 (1999).

    Article  Google Scholar 

  41. Z. Sun, Front. Biosci. (Elite Ed.) 2, 495 (2010).

    Article  Google Scholar 

  42. G. Ilievska, S. Dinevska-Kjovkarovska, and B. Miova, Cell Stress Chaperones 23 (4), 561 (2018).

    Article  Google Scholar 

  43. M. B. Harris, M. A. Blackstone, H. Ju, et al., Am. J. Physiol. Heart Circ. Physiol. 285 (1), H333 (2003).

    Article  Google Scholar 

  44. E. B. Manukhina, D. A. Pokidyshev, I. I. Malyshev, et al., Biol. Bull. 25 (2), 243 (1998).

    Google Scholar 

  45. V. Richard, K. Laude, C. Artigues, et al., Clin. Exp. Pharmacol. Physiol. 29 (11), 956 (2002).

    Article  Google Scholar 

  46. J. Li, Y. X. Cao, L. Cao, et al., Eur. J. Pharmacol. 588 (2–3), 280 (2008).

  47. D. T. Chiu and K. K. Cheng, Clin. Exp. Pharmacol. Physiol. 3 (5), 449 (1976).

    Article  Google Scholar 

  48. C. Adan, A. Ardevol, X. Remesar, et al., Arch. Int. Physiol. Biochim. Biophys. 102 (1), 55 (1994).

    Google Scholar 

  49. G. F. Sultanov, K. S. Amannepesov, S. F. Dugin, et al., Ross. Fiziol. Zh. im. I.M. Sechenova 77 (4), 34 (1991).

    Google Scholar 

  50. K. C. Kregel, D. G. Johnson, C. M. Tipton, and D. R. Seals, Hypertension 15 (5), 497 (1990).

    Article  Google Scholar 

  51. M. Kuwahara, S. Sugano, K. Yayou, et al., Jikken Dobutsu 40 (3), 331 (1991).

    Google Scholar 

  52. C. B. Matthew, J. Therm. Biol. 22 (4–5), 275 (1997).

  53. M. Horowitz and U. Meiri, Pfluger’s Arch. 422 (4), 386 (1993).

    Article  Google Scholar 

  54. H. Nakagawa, T. Matsumura, K. Suzuki, et al., J. Therm. Biol. 58, 15 (2016).

    Article  Google Scholar 

  55. T. Ishiwata, H. Hasegawa, and B. N. Greenwood, Neurosci. Lett. 653, 71 (2017).

    Article  Google Scholar 

  56. O. Kashimura, Nihon Eiseigaku Zasshi 48 (4), 859 (1993).

    Article  Google Scholar 

  57. Y. P. Liu, Y. H. Lin, Y. C. Chen, et al., Life Sci. 136, 19 (2015).

    Article  Google Scholar 

  58. D. M. Vianna and P. Carrive, Am. J. Physiol. Regul. Integr. Comp. Physiol. 297 (2), R495 (2009).

    Article  Google Scholar 

  59. M. J. Fregly, D. C. Kikta, R. M. Threatte, et al., J. Appl. Physiol. 66 (2), 741 (1989).

    Article  Google Scholar 

  60. N. I. Roukoyatkina, S. I. Chefer, J. Rifkind, et al., Am. J. Hypertens. 12 (1, Pt 1), 54 (1999).

    Article  Google Scholar 

  61. Z. Sun, R. Cade, M. J. Katovich, and M. J. Fregly, Physiol. Behav. 65 (4–5), 879 (1999).

  62. Z. Sun, Am. J. Physiol. Renal Physiol. 290 (6), F1472 (2006).

    Article  Google Scholar 

  63. Z. Zhu, S. Zhu, J. Zhu, et al., Am. J. Hypertens. 15 (2, Pt 1), 176 (2002).

    Article  Google Scholar 

  64. Y. Cheng and D. Hauton, Biochim. Biophys. Acta 1781 (10), 618 (2008).

    Article  Google Scholar 

  65. D. Hauton, S. May, R. Sabharwal, et al., J. Exp. Biol. 214 (Pt 18), 3021 (2011).

    Article  Google Scholar 

  66. R. Sabharwal, E. J. Johns, and S. Egginton, Exp. Physiol. 89 (4), 455 (2004).

    Article  Google Scholar 

  67. M. Borenstein, L. V. Hedges, J. P. T. Higgins, and H. R. Rothstein, Introduction to Meta-Analysis (Wiley, Chichester, 2009).

    Book  MATH  Google Scholar 

  68. H. S. Sharma, J. Westman, F. Nyberg, et al., Acta Neurochir. Suppl. (Wien) 60, 65 (1994).

    Google Scholar 

  69. S. J. Swoap, J. M. Overton, and G. E. Garber, Am. J. Physiol. Regul. Integr. Comp. Physiol. 287 (2), R391 (2004).

    Article  Google Scholar 

  70. A. Maloyan, A. Palmon, and M. Horowitz, Am. J. Physiol. 276 (5), R1506 (1999).

    Google Scholar 

  71. J. S. Kerr, R. L. Squibb, and H. M. Frankel, Int. J. Biochem. 6 (3), 191 (1975).

    Article  Google Scholar 

  72. M. Horowitz, Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 131 (3), 475 (2002).

    Article  Google Scholar 

  73. S. Yu. Tsibul’niko, L. N. Maslov, N. V. Naryzhnaya, and V. V. Ivanov, Patol. Fiziol. Eksp. Terapiya 62 (1), 17 (2018).

    Google Scholar 

  74. O. Shechtman, P. E. Papanek, and M. J. Fregly, Can. J. Physiol. Pharmacol. 68 (7), 830 (1990).

    Article  Google Scholar 

  75. J. B. Chambers, T. D. Williams, A. Nakamura, et al., Am. J. Physiol. Regul. Integr. Comp. Physiol. 279 (4), R1486 (2000).

    Article  Google Scholar 

  76. S. Arancibia, F. Rage, H. Astier, and L. Tapia-Arancibia, Neuroendocrinology 64 (4), 257 (1996).

    Article  Google Scholar 

  77. Y. Nakane and T. Yoshimura, Front. Neurosci. 8, 115 (2014).

    Article  Google Scholar 

  78. R. A. Louzada, M. C. Santos, J. P. Cavalcanti-de-Albuquerque, et al., Am. J. Physiol. Endocrinol. Metab. 307 (11), E1020 (2014).

    Article  Google Scholar 

  79. E. R. Kuhn, K. Bellon, L. Huybrechts, and W. Heyns, Horm. Metab. Res. 15 (10), 491 (1983).

    Article  Google Scholar 

  80. H. Dardente, C. A. Wyse, M. J. Birnie, et al., Curr. Biol. 20 (24), 2193 (2010).

    Article  Google Scholar 

  81. H. Dardente, D. G. Hazlerigg, and F. J. Ebling, Front. Endocrinol. (Lausanne) 5, 19 (2014).

    Article  Google Scholar 

  82. M. Horowitz, Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 131 (3), 475 (2002).

    Article  Google Scholar 

  83. E. Mirit, A. Palmon, Y. Hasin, and M. Horowitz, Am. J. Physiol. 276 (2), R550 (1999).

    Google Scholar 

  84. S. V. Glinnik, O. N. Rineiskaya, I. V. Romanovskii, and T. P. Krasnenkova, Vestn. VGMU, No. 2, 13 (2007).

    Google Scholar 

  85. Z. Ostrowska, B. Kos-Kudla, B. Marek, and D. Kajdaniuk, Endocr. Regul. 37 (3), 163 (2003).

    Google Scholar 

  86. B. L. Zhang, E. Zannou, and F. Sannajust, Am. J. Physiol. Regul. Integr. Comp. Physiol. 279 (1), 169 (2000).

    Article  Google Scholar 

  87. D. Sarne, Endotext [Internet] (MDText.com, Inc., South Dartmouth, MA, 2000−2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Kuzmenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Abbreviations: AT1, angiotensin type 1 receptors; BP, blood pressure; HR, heart rate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmenko, N.V., Shcherbak, N.S., Pliss, M.G. et al. A Meta-Analysis of Cardiovascular Adaptive Responses to Temperature Variations in Normotensive Rats. BIOPHYSICS 66, 1016–1025 (2021). https://doi.org/10.1134/S0006350921060099

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921060099

Navigation