Skip to main content
Log in

Mathematical Modeling of Transcription Bubble Behavior in the pPF1 Plasmid and its Modified Versions: The Link between the Plasmid Energy Profile and the Direction of Transcription

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

In this study we used the kink solutions of the nonlinear sine-Gordon equation to apply methods of mathematical modeling to investigate the dynamics of the transcription bubble in the pPF1 plasmid. Based on the calculated energy profile for the pPF1 plasmid and its modified versions, it was shown that the minimum potential energy of the kink formation or transcription bubble nucleation corresponds to the region between the genes of the Egfp and mCherry proteins. The insertion of homogeneous sequences into the region between Egfp and mCherry showed that the kink is more likely to be activated in polyT or polyC compared to polyA or polyG, which indicates the dependence of nucleation of the transcription bubble on the molecular weight of base pairs. For insertions into the region between Egfp and mCherry of small fragments of the native sequence of Escherichia coli, the model identifies the DNA strands with the highest probability of nucleation of the transcription bubble and, accordingly, determines the direction (towards the Egfp or mCherry gene) of transcription, indicating a link between the direction of transcription and the energy profile of the plasmid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Map of plasmid pET-28b https://www.snapgene. com/resources/plasmid-files/?set=pet_and_duet_vectors_(novagen)&plasmid=pET-28b(%2B). Accessed November 1, 2020.

  2. I. S. Masulis, Z. Sh. Babaeva, S. V. Chernyshov, et al., Sci. Rep. 5, 11449 (2015).

    Article  ADS  Google Scholar 

  3. S. Borukhov and E. Nudler, Trends Microbiol. 16 (3), 126 (2008).

    Article  Google Scholar 

  4. J. Y. Kang, T. V. Mishanina, R. Landick, et al., J. Mol. Biol. 431 (20), 4007 (2019).

    Article  Google Scholar 

  5. M. T. Jr. Record, W. S. Reznikoff, M. L. Craig, et al., in Escherichia coli and Salmonella Cellular and Molecular Biology, Ed. by F.C. Neidhardt (ASM Press, Washington, DC, 1996), pp. 792–821.

    Google Scholar 

  6. H. Boyaci, J. Chen, R. Jansen, et al., Nature 565 (7739), 382 (2019).

    Article  ADS  Google Scholar 

  7. J. Chen, C. Chiu, S. Gopalkrishnan, et al., Mol Cell. 78 (2), 275 (2020).

    Article  Google Scholar 

  8. E. F. Ruff, M. T. Jr. Record, and I. Artsimovitch. Biomolecules 5 (2), 1035 (2015).

    Article  Google Scholar 

  9. J. T. Winkelman, I. O. Vvedenskaya, Y. Zhang, et al., Science 351 (6277), 1090 (2016).

    Article  ADS  Google Scholar 

  10. P. J. Caudrey, J. C. Eilbeck, and J. D. Gibbon, Nuovo Cimento B 25 (2), 497 (1975).

    Article  ADS  Google Scholar 

  11. V. G. Ivancevic and T. T. Ivancevic, J. Geometry Symmetry Phys. 31, 1 (2013).

    MathSciNet  Google Scholar 

  12. A. A. Grinevich, A. A. Ryasik, and L. V. Yakushevich, Chaos Soliton. Fract. 75, 62 (2015).

    Article  ADS  Google Scholar 

  13. L. V. Yakushevich and L.A. Krasnobaeva, Math. Biol. Bioinform. 14 (1), 327 (2019).

    Article  Google Scholar 

  14. K. S. Shavkunov, I. S. Masulis, M. N. Tutukina, et al., Nucleic Acids Res. 37 (15), 4919 (2009).

    Article  Google Scholar 

  15. L. A. Krasnobaeva and L. V. Yakushevich, J. Bioinform. Comput. Biol. 13 (1), 1540002 (2015).

    Article  Google Scholar 

  16. L. V. Yakushevich and L. A. Krasnobaeva, Int. J. Nonlinear Mech. 43, 1074 (2008).

    Article  ADS  Google Scholar 

  17. L. V. Yakushevich, J. Biol. Phys. 43, 113 (2017).

    Article  Google Scholar 

  18. W. Englander, N. R. Kallenbach, A. J. Heeger, et al., Proc. Natl. Acad. Sci. U. S. A. 77, 7222 (1980).

    Article  ADS  Google Scholar 

  19. L. V. Yakushevich, L. A. Krasnobaeva, A. V. Sha-povalov, and N. R. Quintero, Biophysics (Moscow) 50 (3) 404 (2005).

    Google Scholar 

  20. L. V. Yakushevich and A. A Ryasik, Komp’yut. Issled. Moled. 4 (1), 209 (2012).

    Google Scholar 

  21. Y. Zhang, Y. Feng, S. Chatterjee, et al., Science 338 (6110), 1076 (2012).

    Article  ADS  Google Scholar 

  22. E. Heyduk, K. Kuznedelov, K. Severinov, et al. J. Biol. Chem. 281 (18), 12362 (2006).

    Article  Google Scholar 

  23. M. E. Karpen and P. L. deHaseth, Biomolecules 5 (2), 668 (2015).

    Article  Google Scholar 

  24. N. S. Roy, S. Debnath, A. Chakraborty, et al., Phys. Chem. Chem. Phys. 20 (14), 9449 (2018).

    Article  Google Scholar 

  25. F. Colizzi, C. Perez-Gonzalez, R. Fritzen, et al., Proc. Natl. Acad. Sci. U. S. A. 116 (45), 22471 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Grinevich.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Makeeva

Abbreviations: bp, base pairs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinevich, A.A., Masulis, I.S. & Yakushevich, L.V. Mathematical Modeling of Transcription Bubble Behavior in the pPF1 Plasmid and its Modified Versions: The Link between the Plasmid Energy Profile and the Direction of Transcription. BIOPHYSICS 66, 209–217 (2021). https://doi.org/10.1134/S000635092102007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635092102007X

Navigation