Skip to main content
Log in

Resveratrol Prevents Stress-Related Dysfunction of Mitochondria

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This study was conducted to investigate the antistress potential of resveratrol, a natural polyphenol, in models that reproduce the conditions of acute hypobaric hypoxia and acute alcohol intoxication. Acute alcohol intoxication and acute hypobaric hypoxia induced an increase in the intensity of lipid peroxidation in the membranes of liver mitochondria from mice. Activation of lipid peroxidation was accompanied by swelling and variations in the levels of fatty acids with C18 and C20–22 in the composition of the total lipid fraction of mitochondrial membranes. The index of the unsaturation of fatty acids with C18 was decreased by 7.5% (from 1.69 ± 0.01 to 1.52 ± 0.01). Furthermore, the (20:3ω6+20:5ω3)/22:6ω3 index decreased from 0.23 ± 0.02 to 0.13 ± 0.01 for fatty acids under acute hypobaric hypoxia conditions, suggesting a decrease in eicosanoid metabolism. The administration of 2 × 10–5 mol/kg of resveratrol in animals for 5 days prevented changes in fatty acid composition, inhibiting activation of lipid peroxidation and swelling of mitochondria, thereby affecting physiological parameters. Thus, the adaptogenic properties of resveratrol may be ascribed to the prevention of lipid peroxidation in mitochondrial membranes, which probably affects the functional state of these organelles, contributing to the maintenance of cellular energy metabolism under stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. L. Tailor, D. A. Day, and A. H. Millar, J. Exp. Bot. 55 (394), 1 (2003).

    Article  Google Scholar 

  2. E. Plotnikov, A. Chupyrkina, A. Vasileva, et al., Biochim. Biophys. Acta 1777, S58 (2008).

    Article  Google Scholar 

  3. M. P. Murphy, Biochem. Soc. Trans. 32 (6), 1011 (2004).

    Article  Google Scholar 

  4. S. Nonomura, H. Kanagawa, and A. Makimoto, Yakugaku Zasshi 83, 988 (1963).

    Article  Google Scholar 

  5. W. Dercks and L. L. Creasy, Physiol. Mol. Plant Pathol. 34, 203 (1989).

    Article  Google Scholar 

  6. V. Cucciolla, A. Borriello, A. Oliva, et al., Cell Cycle 6 (20), 2495 (2007). https://doi.org/10.4161/cc.6.20.4815

    Article  Google Scholar 

  7. J. A. Baur and D. A. Sinclair, Nat. Rev. Drug Discovery 5, 493 (2006).

    Article  Google Scholar 

  8. S. Saxena and A. Srivastava, J. Pharmaceut. Technol. Res. Manag. 2, 145, (2014). https://doi.org/10.15415/jptrm.2014.22010

    Article  Google Scholar 

  9. E. Wenzel and V. Somoza, Mol. Nutr. Food Res. 49 (5), 472 (2005).

    Article  Google Scholar 

  10. X. Vitrac, A. Desmouliere, B. Brouillaud, et al., Life Sci. 72 (20), 2219 (2003).

    Article  Google Scholar 

  11. A. C. Moreira, A. M. Silva, M. S. Santos, and V. A. Sardao, Food Chem. Toxicol. 53, 18 (2013). https://doi.org/10.1016/j.fct.2012.11.031

    Article  Google Scholar 

  12. N. Gueguen, V. Desquiret-Dumas, G. Leman, et al., PloS One 10 (12), e0144290 (2015). https://doi.org/10.1371/journal. pone.0144290

  13. V. Desquiret-Dumas, N. Gueguen, G. Leman, et al., J. Biol. Chem. 288, 6662 (2013).

    Article  Google Scholar 

  14. J. Zheng and V. D. Ramirez, Br. J. Pharmacol. 130, 1115 (2000).

    Article  Google Scholar 

  15. J. L. Kipp and V. D. Ramirez, Endocrine 15, 165 (2001).

    Article  Google Scholar 

  16. M. Ingles, J. Gambini, M. G. Miguel, et al., BioMed Res. Int. 2014 (3), Article ID 580852 (2014).

    Article  Google Scholar 

  17. J. A. Rubiolo, G. Mithieux, and F. V. Vega, Eur. J. Pharmacol. 591 (1–3), 66 (2008).

  18. G.-S. Liu, Z.-S. Zhang, B. Yang, and W. He, Life Sci. 91 (17–18), 872 (2012).

  19. W. Gadacha, M. Ben-Attia, D. Bonnefont-Rousselot, et al., Redox Rep. 14 (4), 154 (2009) https://doi.org/10.1179/135100009X46613112

    Article  Google Scholar 

  20. Protection of Vertebrate Animals Used for Experimental and other Scientific Purposes (ETS 123) (Strasburg, 1986).

  21. Manual of Laboratory Animals and Alternative Models in Biomedical Research, Ed. by N. N. Karkishchenko and S. V. Gracheva (Profil’ Moscow, 2010) [in Russian].

    Google Scholar 

  22. E. N. Mokhova, V. P. Skulachev, and I. V. Zhigacheva, Biochim. Biophys. Acta 501, 415 (1977).

    Article  Google Scholar 

  23. B. I. Fletcher, C. D. Dillard, and A. L. Tappel, Anal. Biochem. 52, 1 (1973). https://doi.org/10.1016/0003-2697(73)90327-811

    Article  Google Scholar 

  24. J. P. Carreau and J. P. Dubacq, J. Chromatogr. 151 (3), 384 (1979). https://doi.org/10.1016/S0021-9673(00)88356-9Get

  25. J. Wang, H. Sunwoo, G. Cherian, and I. S. Sim, Poultry Sci. 79 (8), 1168 (2000). https://doi.org/10.1093/ps/79.8.1168

    Article  Google Scholar 

  26. R. V. Golovina and T. E. Kuzmenko, Chromatography 10 (9), 545 (1977).

    Article  Google Scholar 

  27. L. D. Lukyanova, Bull. Exp. Biol. Med. 124 (9), 244 (1997).

    Google Scholar 

  28. E. G. Dorkina, Eksp. Klin. Farmakol. 73 (4), 35 (2010).

    Google Scholar 

  29. I. Scott and D. C. Logan, New Phytol. 177, 90 (2008).

    Article  Google Scholar 

  30. C. C. C. R. de Carvalho and M. J. Caramujo, Molecules 23 (10), 2583 (2018). https://doi.org/10.3390/molecules23102583

    Article  Google Scholar 

  31. J. Petereit, K. Katayama, Ch. Lorenz, et al., Front. Plant Sci. 8, 72 (2017). .https://doi.org/10.3389/fpls.2017.00072

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rasulov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. This study was conducted in compliance with the Rules of Good Laboratory Practice existing in the Russian Federation and the rules adopted by The European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes.

Additional information

Translated by M. Novikova

Abbreviations: ROS, reactive oxygen species; TMPD, N,N,N',N'-tetramethyl-p-phenylenediamine; LPO, lipid peroxidation; FAME, fatty acid methyl esters; FA, fatty acid; AFM, atomic force microscopy; AHH, acute hypobaric hypoxia; AAI, acute alcohol intoxication

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binyukov, V.I., Zhigacheva, I.V., Mil’, E.M. et al. Resveratrol Prevents Stress-Related Dysfunction of Mitochondria. BIOPHYSICS 66, 248–254 (2021). https://doi.org/10.1134/S0006350921020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921020032

Navigation