Skip to main content
Log in

A Theory of Charge Selectivity Reversal in Cation- or Anion-Selective Tight Junctions between Epithelial Cells: A Nonlocal Electrostatic Approach

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A theory was developed to explain how charge selectivity is reversed in tight junctions (TJs) between epithelial cells when the sign of the TJ fixed charge changes. An original method that allows for the ion cavity effect was used to calculate the changes in ion solvation energies that occur upon ion transfer in TJs. An equation was derived to describe the Na+ to Cl permeability ratio of TJs as a function of the concentration and sign of TJ fixed charges and the correlation length of water. The theory agrees with published experimental data that Na+/Cl selectivity is reversed in Madin–Darby canine kidney (MDCK) cells when claudin-15 protein molecules with a changed sign of amino acid residues are expressed in TJs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. O. R. Colegio, C. M. Van Itallie, H. J. McCrea, et al., Am. J. Physiol. Cell Physiol. 283, C142 (2002).

    Article  Google Scholar 

  2. C. M. Van Itallie, A. S. Fanning, and J. M. Anderson, Am. J. Physiol. Renal Physiol. 285, F1078 (2003).

    Article  Google Scholar 

  3. C. M. Van Itallie and J. M. Anderson, Physiology 19, 331 (2004).

    Article  Google Scholar 

  4. J. M. Anderson and C. M. Van Itallie, Cold Spring Harb. Perspect. Biol. 1, a002584 (2009).

    Article  Google Scholar 

  5. A. A. Rubashkin, P. Iserovich, J. A. Hernandez, et al., J. Membr. Biol. 208, 251 (2005).

    Article  Google Scholar 

  6. A. A. Rubashkin and P. Iserovich, Tsitologiya 60, 136 (2018).

    Article  Google Scholar 

  7. A. A. Rubashkin, D. V. Konev, and A. B. Tsyganov, Elektrokhim. Energ. 15, 149 (2015).

    Google Scholar 

  8. A. A. Kornyshev, G. I. Tsitsuashvili, and A. E. Yaro-shchuk, Elektrokhimiya 25, 1037 (1989).

    Google Scholar 

  9. A. A. Kornyshev, G. I. Tsitsuashvili, and A. E. Yaro-shchuk, Elektrokhimiya 25, 1045 (1989).

    Google Scholar 

  10. R. R. Dogonadze and A. A. Kornyshev, J. Chem. Soc. Faraday Trans. II 70, 1121 (1974).

    Article  Google Scholar 

  11. M. A. Vorotyntsev and A. A. Kornyshev, Electrostatics of Media with Spatial Dispersion (Nauka, Moscow, 1993) [in Russian].

    MATH  Google Scholar 

  12. A. A. Kornyshev and G. Sutmann, J. Phys. Chem. 104, 1524 (1996).

    Article  Google Scholar 

  13. M. A. Vorotyntsev, J. Phys. C: Solid State Phys. 11, 3323 (1978).

    Article  ADS  Google Scholar 

  14. M. A. Vorotyntsev and A. A. Rubashkin, Phys. Chem. Liquids 55, 141 (2017).

    Article  Google Scholar 

  15. M. A. Vorotyntsev, A. A. Rubashkin, and A. E. Antipov, Elektrokhimiya 54, S54 (2018).

    Google Scholar 

  16. M. A. Vorotyntsev and A. A. Rubashkin, Chem. Phys. 521, 14 (2019).

    Article  Google Scholar 

  17. S. Ebbinghaus, S. J. Kim, M. Heyden, et al., Proc. Natl. Acad. Sci. U. S. A. 104 (52), 20749 (2007).

    Article  ADS  Google Scholar 

  18. A. A. Rubashkin and M. A. Vorotyntsev, Curr. Phys. Chem. 6, 120 (2016).

    Article  Google Scholar 

  19. B. S. Gourary and F. J. Adrian, Solid State Phys. 10, 127 (1960).

    Article  Google Scholar 

  20. M. V. Fedorov and A. A. Kornyshev, Mol. Phys. 105, 1 (2007).

    Article  ADS  Google Scholar 

  21. A. A. Rubashkin, P. Iserovich, and M. A. Vorotyntsev, J. Mol. Liquids 317, 113884 (2020).

    Article  Google Scholar 

Download references

Funding

This work was supported by state contract no. AAAA-A17-117032350032-3 (A.A. Rubashkin) and the Ministry of Science and Education of the Russian Federation (state contract no. AAAA-A20-120101090002-4, M.A. Vorotyn-tsev).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Rubashkin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

This work does not contain any studies involving animals or human subjects performed by any of the authors.

Additional information

Translated by T. Tkacheva

Abbreviations: TJ, tight junction; MDCK, Madin–Darby canine kidney (cells).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubashkin, A.A., Iserovich, P. & Vorotyntsev, M.A. A Theory of Charge Selectivity Reversal in Cation- or Anion-Selective Tight Junctions between Epithelial Cells: A Nonlocal Electrostatic Approach. BIOPHYSICS 66, 84–90 (2021). https://doi.org/10.1134/S0006350921010127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921010127

Navigation