Skip to main content
Log in

The Formation of Ordered structures of Bacterial Porins in a Lipid Bilayer and the Analysis of their Morphology by Atomic Force Microscopy

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Ordered nanostructures of porin from the outer membrane of Yersinia pseudotuberculosis (YpOmpF) were formed in two ways: from proteoliposomes and by direct protein reconstitution in the pre-deposited phospholipid bilayer on mica surface. The morphological analysis of the structures was performed by atomic force microscopy. It was shown that the efficiency of formation, the degree of homogeneity, and the size of porin domains substantially depend on the experimental conditions and the presence of lipopolysaccharide in a porin sample or in the bilayer. It was found that using proteoliposomes resulted in formation of the aggregates of porin nanodomains on the mica surface, with uneven distribution in the bilayer and quite different size ranges (50–250 nm). In the case of direct reconstruction of porin, it was shown that a decrease in pH of the solubilizing buffer promotes the inclusion of a sufficiently large amount of protein as homogeneous domains with an average size of 35–40 nm but does not lead to the formation of extended nanostructured regions in the bilayer. The most efficient incorporation of porin into the lipid bilayer with the formation of clusters of tightly packed protein domains was achieved using a porin sample in combination with peptidoglycan and lipopolysaccharide, which this protein is tightly bound to in the native bacterial membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Wang, T.-S. Chung, Y. W. Tong, et al., Small 8 (8), 1185 (2012).

    Article  Google Scholar 

  2. M. Bieligmeyer, F. Artukovic, S. Nussberger, et al., Beilstein J. Nanotechnol. 7, 881 (2016).

    Article  Google Scholar 

  3. N. V. Medvedeva, O. M. Ipatova, Yu. D. Ivanov, et al., Biomed. Khim. 52 (6), 529 (2006).

    Google Scholar 

  4. G. E. Schulz, Biochim. Biophys. Acta 1565 (2), 308 (2002).

    Article  Google Scholar 

  5. A. Wiese, G. Schroder, K. Brandenburg, et al., Biochim. Biophys. Acta 1190 (2), 231 (1994).

    Article  Google Scholar 

  6. D. J. Muller and A. Engel, Curr. Opin. Colloid Interface Sci. 13 (5), 338 (2008).

    Article  Google Scholar 

  7. L. Hasler, J. B. Heymann, A. Engel, et al., J. Struct. Biol. 121, 162 (1998).

    Article  Google Scholar 

  8. B. R. Glick and J. J. D. Pasternak, Molecular Biotechnology: Principles and Appliactions of Recombinant DNA, 2nd ed. (ASM Press, Washington, DC, 1998; (Mir, Moscow, 2002).

  9. J. P. Rosenbusch, J. Biol. Chem. 249 (24), 8019 (1974).

    Google Scholar 

  10. T. I. Burtseva, L. I. Glebko, and Yu. S. Ovodov, Anal. Biochem. 64 (1), 1 (1975).

    Article  Google Scholar 

  11. O. D. Novikova, T. I. Vakorina, V. A. Khomenko, et al., Biochemistry (Moscow) 73 (2), 139 (2008).

    Article  Google Scholar 

  12. J. C. Todt, W. J. Roque, and E. J. McGroarty, Biochemistry 31 (43), 10471, (1992).

    Article  Google Scholar 

  13. F. A. Schabert and A. Engel, Biophis. J. 67 (6), 2394 (1994).

    Article  ADS  Google Scholar 

  14. P.-E. Milhiet, F. Gubellin, A. Berquand, et al., Biophys. J. 91 (9), 3268 (2006).

    Article  ADS  Google Scholar 

  15. O. P. Vostrikova, N. Yu. Kim, G. N. Likhatskaya, et al. Russ. J. Bioorg. Chem. 32 (4), 333 (2006).

    Article  Google Scholar 

  16. J. H. Kleinschmidt and L. K. Tamm, J. Mol. Biol. 324 (2), 319 (2002).

    Article  Google Scholar 

  17. J. H. Kleinschmidt, Chem. Phys. Lipids 141 (1–2), 30 (2006).

    Article  Google Scholar 

  18. K. Sen and H. Nikaido, J. Bacteriol. 173 (2), 926 (1991).

    Article  Google Scholar 

  19. O. D. Novikova, N. Yu. Kim, P. A. Luk’yanov, et al., Biochemistry (Moscow), Ser. A: Membr. Cell Biol. 24 (2), 154 (2007).

    Google Scholar 

  20. O. P. Vostrikova, G. N. Likhatskaya, O. D. Novikova, et al., Biol. Membrany 17 (4), 399 (2000).

    Google Scholar 

  21. S. Jaroslavski, K. Duquesne, J. N. Sturgis, et al., Mol. Microbiol. Biochem. J. 74 (5), 1211 (2009).

    Article  Google Scholar 

  22. H. Nikaido, Microbiol. Mol. Biol. Rev. 676 (4), 593 (2003).

    Article  Google Scholar 

  23. M. W. Ullah, Z. Shi, X. Shi, et al., ACS Sustainable Chem. Eng. 5 (12), 11163 (2017).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-03-00318).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. A. Naberezhnykh or A. A. Karpenko.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interes-t.

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. V. Makeeva

Abbreviations: LPS, lipopolysaccharide; AFM, atomic force microscopy; OG, β-D-octylglucoside.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naberezhnykh, G.A., Karpenko, A.A., Khomenko, V.A. et al. The Formation of Ordered structures of Bacterial Porins in a Lipid Bilayer and the Analysis of their Morphology by Atomic Force Microscopy. BIOPHYSICS 64, 901–907 (2019). https://doi.org/10.1134/S0006350919060162

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919060162

Keywords:

Navigation