Skip to main content
Log in

A Computer Simulation of an Intracellular Mechanism for the Generation and Suppression of Cardiac Arrhythmias

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—This paper reports an analysis of a stochastic model of ion dynamics in the cardiac pacemaker cell within the framework of the generalized two-oscillator Maltsev–Lakatta model, including the electron-conformational model of ryanodine receptors. It has been demonstrated that generation of an action potential depends significantly on the nature of the interaction between the external membrane and the internal (Ca2+ clock) oscillators. Constructive interaction between oscillators leads to the formation of a stable action potential, while destructive interaction leads to parasitic effects, in particular, to arrhythmias. The effects of the model parameters that are characteristic of the rabbit sinoatrial heart node on the shape of the time dependence of the cell membrane potential has been investigated. The conditions under which spontaneous transition to the abnormally fast oscillatory mode takes place have been determined and the mechanism of this transition has been described; the pacemaker cell behavior in tachycardia has actually been simulated. It has been demonstrated that suppression of the rapid potassium current leads to the recovery of the normal oscillation mode of ion dynamics in a pacemaker cell, which corresponds to the mode of action of class III antiarrhythmic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. W. J. Mandel, Cardiac Arrhythmias: Their Mechanisms, Diagnosis, and Management, 3rd ed. (Lippincott, Williams, amd Wilkins, 1995; Meditsina, Moscow, 1996).

  2. The Cardiac Arrhythmias Suppression Trial Investigators (CAST), N. Engl. J. Med., 321, 406 (1989).

  3. The Cardiac Arrhythmias Suppression Trial Investigators (CAST), N. Engl. J. Med. 327, 233 (1992).

  4. T. M. Vinogradova, Y. Y. Zhou, V. A. Maltsev, et al., Circ. Res. 94 (6), 802 (2004).

    Article  Google Scholar 

  5. K. Y. Bogdanov, V. A. Maltsev, T. M. Vinogradova, et al., Circ. Res. 99, 979 (2006).

    Article  Google Scholar 

  6. V. A. Maltsev and E. G. Lakatta, Am. J. Physiol. Heart Circ. Physiol. 296, 594 (2009).

    Article  Google Scholar 

  7. E. Bozler, Am. J. Physiol. 138, 273 (1943).

    Article  Google Scholar 

  8. E. A. Sobie, K. W. Dilly, and M. S. Jafri, Biophys. J. 83, 59 (2002).

    Article  ADS  Google Scholar 

  9. I. Gyorke and S. Gyorke, Biophys. J. 75 (6), 2801 (1998).

    Article  ADS  Google Scholar 

  10. R. Wilders, H. J. Jongsma, and A. C. G. van Ginneken, Biophys. J. 60 (5), 1202 (1991).

    Article  Google Scholar 

  11. T. R. Shannon, S. M. Pogwizd, and D. M. Bers, Circ. Res. 93 (7), 592 (2003).

    Article  Google Scholar 

  12. T. R. Shannon, F. Wang, J. Puglisi, et al., Biophys. J. 87(5), 3351 (2004).

    Article  ADS  Google Scholar 

  13. Y. Kurata, I. Hisatome, S. Imanishi, and T. Shibamoto, Am. J. Physiol. Heart Circ. Physiol. 283 (5), H2074 (2002).

    Article  Google Scholar 

  14. D. Bers, Excitation–Contraction Coupling and Cardiac Contractile Force (Springer, New York, 2001).

    Book  Google Scholar 

  15. Y. Kurata, I. Hisatome, S. Imanishi, and T. Shibamoto, Am. J. Physiol. Heart Circ. Physiol. 285 (6), H2804 (2003).

    Article  Google Scholar 

  16. M. Baruscotti, A. Bucchi, and D. Difrancesco, Pharmacol. Ther. 107, 59 (2005).

    Article  Google Scholar 

  17. A. S. Moskvin, M. P. Philipiev, O. E. Solovyova, and V. S. Markhasin, Dokl. Biochem. Biophys. 400, 32 (2005).

    Article  Google Scholar 

  18. A. S. Moskvin, M. P. Philipiev, O. E. Solovyova, and V. S. Markhasin, Prog. Biophys. Mol. Biol. 90, 88 (2006).

    Article  Google Scholar 

  19. A. S. Moskvin, B. I. Iaparov, A. M. Ryvkin, O. E. Solovyova, and V. S. Markhasin, JETP Lett. 102 (1), 67 (2015).

    Article  ADS  Google Scholar 

  20. A. M. Ryvkin, A. S. Moskvin, O. E. Solovyova, and V. S. Markhasin, Dokl. Ross. Akad. Nauk 444 (5), 572 (2012).

    Google Scholar 

  21. A. S. Moskvin, A. M. Ryvkin, O. E. Solovyova, and V. S. Markhasin, JETP Lett. 93, 446 (2011).

    Article  Google Scholar 

  22. A. M. Ryvkin, N. M. Zorin, A. S. Moskvin, et al., Biophysics (Moscow) 60 (6), 946 (2015).

    Article  Google Scholar 

  23. M. A. Gonotkov, Candidate’s Dissteration in Biology (Syktyvkar, 2015).

    Google Scholar 

  24. V. V. Malev, Y. A. Kaulin, S. M. Bezrukov, P. A. Gurnev, J. Y. Takemoto and L. V. Shchagina, Membr. Cell Biol. 14, 813 (2001).

    Google Scholar 

Download references

Funding

This work was supported in part by the Russian Federation Government Program 211 (grant no. 02.A03.21.0006) and in part by the Ministry of Education and Science of the Russian Federation (project no. 5719).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Shevchenko.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors. The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Martynova

Abbreviations: ML model, Maltsev–Lakatta model; EC model, electron-conformational model; RyR, ryanodine-sensitive receptor (ryanodine receptor); SP, sarcoplasmic reticulum; AP, action potential.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zorin, N.M., Shevchenko, M.I. & Moskvin, A.S. A Computer Simulation of an Intracellular Mechanism for the Generation and Suppression of Cardiac Arrhythmias. BIOPHYSICS 64, 639–648 (2019). https://doi.org/10.1134/S0006350919040249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919040249

Navigation