Skip to main content
Log in

Correction of Cold Damage to Mammalian Erythrocytes by Chlorpromazine to Influence the Dynamic Structure of a Membrane

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The resistance of mammalian erythrocytes (human, dog, horse, bull, and rabbit) to cold shock in the presence of chlorpromazine was studied; its effect on the state of erythrocyte membranes was investigated. The bond strength between membrane phospholipids of mammalian erythrocytes and the characteristics of the cold shock of these cells was determined with the correlation analysis. It has been established that erythrocytes of mammals whose membranes contain a high content of sphingomyelin and phosphatidylethanolamine and a low content of phosphatidylcholines are more resistant to cold shock. Chlorpromazine showed high efficiency in protecting mammalian erythrocytes against cold shock. The dynamic structure of membranes of human erythrocytes treated with the chlorpromazine was studied by EPR of spin-probes. The use of a set of spin-labeled probes: palmitic acid amide, 5-DOXYL stearic acid, and 16-DOXYL stearic acid, which allow studying the micro-viscosity parameters of the lipid bilayer of erythrocyte membranes in the transmembrane direction, made it possible to establish the locations of chlorpromazine action, namely, in the region of polar heads and hydrophobic tails of membrane phospholipids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. A. M. Belous, E. A. Gordienko, and L. F. Rozanov, Freezing and Cryoprotection (Vysshaya Shkola, Moscow, 1987) in Russian].

  2. A. M. Belous and V. I. Grishchenko, Cryobiology (Naukova Dumka, Kiev, 1994) [in Russian].

    Google Scholar 

  3. H. Giang and M. Schick, Chem. Phys. Lipids 199, 35 (2016).

    Article  Google Scholar 

  4. L. Mao, L. Yang, Q. Zhang, et al., Biochem. Biophys. Res. Commun. 468 (1–2), 125 (2015).

  5. Y. Lange, S. M. Ali Tabei, J. Ye, et al., Biochemistry 52 (40), 6950 (2013).

    Article  Google Scholar 

  6. W. F. Wolkers, L. M. Crowe, N. M. Tsvetkova, et al., Mol. Membr. Biol. 19 (1), 59 (2002).

    Article  Google Scholar 

  7. M. B. Cassera, A. M. Silber, and A. M. Gennaro, Biophys. Chem. 99 (2), 117 (2002).

    Article  Google Scholar 

  8. J. Florin-Christensen, C. E. Suarez, M. Florin-Christensen, et al., Proc. Natl. Acad. Sci. U. S. A. 98 (14), 7736 (2001).

    Article  ADS  Google Scholar 

  9. G. Benga, Eur. Biophys. J. 42 (1), 33 (2013).

    Article  Google Scholar 

  10. L. Liu, T. Lei, L. Bankir, et al., J. Comp. Physiol. B 181 (1), 65 (2011).

    Article  Google Scholar 

  11. H. Matei, L. Frentescu, and Gh. Benga, J. Cell. Mol. Med. 4 (4), 270 (2000).

    Article  Google Scholar 

  12. P. Bogner, K. Sipos, A. Ludany, et al., Eur. Biophys. J. 31 (2), 145 (2002).

    Article  Google Scholar 

  13. N. M. Shpakova, E. R. Pantaler, and V. A. Bondarenko, Biokhimiya 60 (10), 1624 (1995).

    Google Scholar 

  14. N. M. Shpakova, Probl. Kriobiol. 19 (4), 449 (2009).

    Google Scholar 

  15. T. Alexandru, A. Staicu, A. Pascu, et al., J. Biomed. Opt. 20 (5), 051002 (2015).

    Article  ADS  Google Scholar 

  16. A. M. Armada, T. Alexandru, D. Machado, et al., In Vivo 27 (5), 605 (2013).

    Google Scholar 

  17. W. Y. Lee, W.T. Lee, C.H. Cheng, et al., Oncotarget 6 (29), 27580 (2015).

    Google Scholar 

  18. D. Rundle-Thiele, R. Head, L. Cosgrove, et al., Br. J. Clin. Pharmacol. 81 (2), 199 (2016).

    Article  Google Scholar 

  19. H. Ahyayaucha, M. Gallego, O. Casis, et al., J. Physiol. Biochem. 62 (3), 199 (2006).

    Article  Google Scholar 

  20. G. I. Lichtenstein, Spin Label Method in Molecular Biology (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  21. J. M. C. Wessels and J. H. Veerkamp, Biochim. Biophys. Acta 291 (1), 190 (1973).

    Article  Google Scholar 

  22. G. J. Nelson, J. Lipid Res. 8 (4), 374 (1967).

    Google Scholar 

  23. A. M. Belous, V. A. Bondarenko, T. P. Bondarenko, et al., Kriobiol. Kriomed. 12, 13 (1983).

    Google Scholar 

  24. W. H. Reinhart, S. Lubszky, S. Thony, et al., Toxicol. In Vitro 28 (7), 1274 (2014).

    Article  Google Scholar 

  25. H. Kawamura, M. Arai, and A. Togari, Pharmacol. Sci. 117 (1), 54 (2011).

    Article  Google Scholar 

  26. C. Lubker and R. Seifert, PLoS One 10 (5), e0124017 (2015).

    Article  Google Scholar 

  27. E. Carafoli and J. Krebs, J. Biol. Chem. 291 (40), 20849 (2016).

    Article  Google Scholar 

  28. A. Roy, J. Ye, F. Deng, et al., Biochim. Biophys. Acta 1868 (1), 283 (2017).

    Google Scholar 

  29. S. Takemoto-Kimura, K. Suzuki, S. I. Horigane, et al., J. Neurochem. 141 (6), 808 (2017).

    Article  Google Scholar 

  30. E. A. Semionova, E. A. Chabanenko, N. V. Orlova, et al., Probl. Cryobiol. Cryomed. 27 (3), 219 (2017).

    Article  Google Scholar 

  31. M. R. Lieber and T. L. Steck, J. Biol. Chem. 257 (19), 11660 (1982).

    Google Scholar 

  32. Y. W. Jiang, G. Gao, Z. Chen, et al., New J. Chem. 41 (10), 4048 (2017).

    Article  Google Scholar 

  33. E. A. Guevara, M. de Lourdes Barriviera, A. Hasson-Voloch, et al., Photochem. Photobiol. 83 (4), 914 (2007).

    Article  Google Scholar 

  34. P. T. Martins, A. Velazquez-Campoy, W. L. Vaz, et al., J. Am. Chem. Soc. 134 (9), 4184 (2012).

    Article  Google Scholar 

  35. N. M. Shpakova, O. N. Dunaevskaya, O. P. Synchikova, et al., Probl. Kriobiol. 3, 7 (2002).

    Google Scholar 

  36. A. V. Agasosler, L. M. Tungodden, D. Cejka, et al., Biochem. Pharmacol. 61 (7), 817 (2001).

    Article  Google Scholar 

  37. J. Y. Chen, L. S. Brunauer, F. C. Chu, et al., Biochim. Biophys. Acta 1616 (1), 95 (2003).

    Article  Google Scholar 

  38. J. Y. Chen and W. H. Huestis, Biochim. Biophys. Acta 1323 (2), 299 (1997).

    Article  Google Scholar 

  39. L. V. Tsymbal, N. V. Orlova, and N. M. Shpakova, Biol. Membr. 22 (4), 327 (2005).

    Article  Google Scholar 

  40. M. Suwalsky, F. Villena, C. P. Sotomayor, et al., Biophys. Chem. 135 (1–3), 7 (2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Shpakova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Statement on the welfare of animals. Animal blood preparation and all manipulations were carried out in accordance with domestic and international bioethical norms, materials of the IV European Convention for the Protection of Vertebrate Animals used for Experimental and other Scientific Purposes (ETS 123) (Strasbourg, 1986).

Additional information

Translated by I. Shipounova

Abbreviations: CPZ, chlorpromazine; PAA, palmitic acid amide; 5-DS, 5-DOXYL stearic acid; 16-DS, 16-DOXYL stearic acid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shpakova, N.M., Orlova, N.V. & Yershov, S.S. Correction of Cold Damage to Mammalian Erythrocytes by Chlorpromazine to Influence the Dynamic Structure of a Membrane. BIOPHYSICS 64, 367–373 (2019). https://doi.org/10.1134/S0006350919030205

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919030205

Navigation