Skip to main content
Log in

Changes in the Level of DNA Damage in Mouse Cells Induced by Atmospheric Factors

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Changes in the level of DNA damage induced by atmospheric factors were evaluated from the percentage of tail DNA (%TDNA) in the comet assay of mouse cells for blood leukocytes, Ehrlich ascites carcinoma, and P388 lymphocytic leukemia. It was shown that (1) the values of DNA damage of blood leukocytes (%TDNA) were high within narrow ranges of atmospheric temperature (from –4°С to +3°С) and atmospheric partial oxygen contents within 298–304 mg/L; (2) the range of variations in %TDNA of leukocytes increased with increasing geomagnetic activity; (3) the changes in %TDNA of intact and X-irradiated (4 Gy) leukocytes and of tumor cells were associated with changes in air temperature; and (4) %TDNA correlated with atmospheric temperature in both types of intact tumor cells and irradiated P388 cells. Thus, variations in %TDNA appear to be caused by reactive oxygen species generated in the environment at temperatures of phase transitions of water. It is conceivable that changes in the basal %TDNA of cells modulate their radiation response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. T. A. Zenchenko, Doctoral Dissertation in Biology (Pushchino, 2016).

  2. T. A. Zenchenko, A. N. Skavulyak, N. I. Khorseva, et al., Geofiz. Protsessy Biosfera 12 (1), 22 (2013).

    Google Scholar 

  3. T. A. Zenchenko and N. G. Varlamova, Geofiz. Protsessy Biosfera 14 (2), 50 (2015).

    Google Scholar 

  4. A. L. Markov, T. A. Zenchenko, Yu. G. Solonin, et al., Aviakosm. Ekol. Med. 47 (2), 29 (2013).

    Google Scholar 

  5. A. I. Gaziev, Radiats. Biol. Radioekol. 39 (6), 630 (1999).

    Google Scholar 

  6. E. I. Azzam, J. P. Jay-Gerin, and D. Pain, Cancer Lett. 327, 48 (2012).

    Article  Google Scholar 

  7. A. R. Collins, A. A. Oscoz, G. Brunborg, et al., Mutagenesis 23 (3), 143 (2008).

    Article  Google Scholar 

  8. D. A. Moshkov, S. P. Romanchenko, E. Yu. Parnyshkova, et al., Bull. Exp. Biol. Med. 154 (5), 686 (2012).

    Article  Google Scholar 

  9. E. V. Inzhevatkin, Practical Course in Experimental Oncology: Ehrlich Ascites Carcinoma (Krasnoyarsk State Univ., Ktasnoyarsk, 2004) [in Russian].

  10. N. K. Chemeris, A. B. Gapeyev, N. P. Sirota, et al., Mutat. Res. 558, 27 (2004).

    Article  Google Scholar 

  11. D. P. Lovell and T. Omori, Mutagenesis 23 (3), 171 (2008).

    Article  Google Scholar 

  12. P. M. Nagorskii, T. A. Zenchenko, K. N. Pustovalov, et al., Vestn. KRAUNTs: Fiz.-Mat. Nauki 4 (20), 64 (2017).

    Google Scholar 

  13. N. Sirota, E. Kuznetsova, and I. Mitroshina, Radiat. Environ. Biophys. 57 (2) 115 (2018).

    Article  Google Scholar 

  14. G. A. Domrachev, D. A. Selianovskii, P. A. Stunzhas, et al., Preprint No. 537, IPF RAN (Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, 2000). http://mognovse.ru/nzx-effektivnoste-obrazovaniyaperoksida-vodoroda-i-radikalov.html; http://pandia.ru/text/80/052/50489.php

    Google Scholar 

  15. M. V. M. Lafleur, J. Woldhuis, and H. Loman, Int. J. Radiat. Biol. 39 (2), 113 (1981).

    Google Scholar 

  16. M. V. M. Lafleur, J. Woldhuis, and H. Loman, Nucleic Acids Res. 9 (23), 6591 (1981).

    Article  Google Scholar 

  17. G. Speit, K. Trenz, et al., Toxicol. Lett. 110, 73 (1999).

  18. E. S. Menchinskaya, Candidate’s Dissertation in Biology (Vladivostok, 2014).

  19. http://www.bionco.ru/methods/exp_chemotherapy/ strains/char_strains/P388.

  20. Models and Methods of Experiemental Oncology, Ed. by A. D. Timofeevskii (Medgz, Moscow, 1960) [in Russian]. http://wincancer.ru/onkologiya/strana.html.

    Google Scholar 

  21. L. A. Suvorova and L. Yu. Nugis, Med. Radiol. Radiats. Besopasn. 57 (1), 30 (2012).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.I. Gaziev, I.Yu. Mitroshina, and M.G. Lomaeva for assistance in some experiments. We appreciate the donation of Ehrlich carcinoma cells by S.P. Romanchenko (Laboratory of Cell Engineering, ITEB, Head of the Group of Cytogenetic Studies S.I. Zaichkina) and the donation of the inoculum of lymphocytic mouse leukemia P388 cells by V.V. Shaposhnikova (Laboratory of Oxidative Stress, ITEB, headed by Yu.N. Korystov).

Funding

This work was supported in part by the Russian Foundation for Basic Research, project 17-29-01007_ofi_m.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kuznetsova.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animals were treated as recommended by the Biosafety and Bioethics Committee, ITEB.

Additional information

Translated by Victor Gulevich

Abbreviations: ROS, reactive oxygen species, EAC, Ehrlich ascites carcinoma, GA, geomagnetic activity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, E.A., Sirota, N.P. & Zenchenko, T.A. Changes in the Level of DNA Damage in Mouse Cells Induced by Atmospheric Factors. BIOPHYSICS 64, 349–357 (2019). https://doi.org/10.1134/S0006350919030114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919030114

Navigation