Skip to main content
Log in

Modification of Redox Processes in C6 Glioma Cells by 2-Hexadeсenal, the Product of Sphingolipid Destruction

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—2-Hexadecenal is an unsaturated aldehyde that is formed during the free radical destruction of sphingolipids under oxidative stress and exhibits biological activity by inhibiting proliferation and inducing apoptosis. The results of studying the modifying effect of this aldehyde on the redox processes that occur in rat C6 glioma cells are presented. It has been shown that cultivation of cells with 2-hexadecenal (at concentrations from 3.5 to 35 μmol/L) leads to a significant increase in the yield of menadione-induced superoxide anion radicals; and at higher concentrations, to its decrease. It has been revealed that under the action of 2-hexadecenal on cells, the additional production of \({\text{O}}_{2}^{{\centerdot - }}\) is completely suppressed in the presence of inhibitors of stress-activated MAP kinases involved in apoptosis triggering, such as JNK, p38, and ERK1/2. The modifying effects of 2-hexadecenal begin to occur at the early stages of its interaction with cells, which is manifested in the increased production of superoxide anion radicals by mitochondria and a decrease in the intracellular level of reduced glutathione. It has been suggested that the modification of the redox state of C6 cells occurs at the initial stage of the intracellular signaling process, in which 2-hexadecenal plays the role of a signaling molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. Bartke and Y. A. Hannun, J. Lipid Res. 50, 591 (2009).

    Article  Google Scholar 

  2. R. P. Rao, N. M. Vaidyanathan, et al., J. Lipids. 2013, Article ID 178910, 12 (2013).

  3. J. Newton, S. Lima, M. Maceyka, et al., Exp. Cell Res. 333 (2), 195 (2015).

    Article  Google Scholar 

  4. N. C. Hait and A. Maiti, Mediators Inflamm. 2017, Article ID 4806541, 17 (2017).

    Google Scholar 

  5. A. G. Lisovskaya, O. I. Shadyro, and I. P. Edimecheva, Lipids 46, 271 (2011).

    Article  Google Scholar 

  6. A. G. Lisovskaya, I. P. Edimecheva and O. I. Shadyro, Photochem. Photobiol. 88, 899 (2012).

    Article  Google Scholar 

  7. V. V. Brahmbhatt, F.-F. Hsu, J. L.-F. Kao, et al., Chem. Phys. Lipids 145, 72 (2007).

    Article  Google Scholar 

  8. O. Shadyro, A. Lisovskaya, G. Semenkova, et al., Lipid Insights 8, 1 (2015).

    Article  Google Scholar 

  9. A. Kumar, H. S. Byun, R. Bittman, et al., Cell Signal. 23, 1144 (2011).

    Article  Google Scholar 

  10. F. Schumacher, C. Neuber, H. Finke, et al., J. Lipid Res. 58, 1648 (2017).

    Article  Google Scholar 

  11. P. Upadhyayaa, A. Kumar, H. Byun, et al., Biochem. Biophys. Res. Commun. 424 (1), 18 (2012).

    Article  Google Scholar 

  12. N. Amaegberi, G. Semenkova, A. Lisovskaya, et al., FEBS J. 284 (Suppl. 1), 243 (2017).

    Google Scholar 

  13. Y. Son, Y.-K. Cheong, N.-H. Kim, et al., J. Signal Transduc. 2011, Article ID 792639, 6 (2011).

    Google Scholar 

  14. Z. Liu, Y. Gong, H.-S. Byun, et al., New J. Chem. 34 (3), 470 (2010).

    Article  Google Scholar 

  15. F. Kato, M. Tanaka, and K. Nakamura, Toxicol. in vitro 13, 923 (1999).

    Article  Google Scholar 

  16. T.A. Kulahava, G.N. Semenkova, Z.B. Kvacheva, et al., Med Sci Monit. 16 (6), 11 (2010).

    Google Scholar 

  17. G. M. Cohen and M. d’Ar. Doherty, Br. J. Cancer 55 (8), 46 (1987).

    Google Scholar 

  18. S. B. Hollensworth, C. C. Shen, J. E. Sim, et al., Free Radic. Biol. Med. 28 (8), 1161 (2000).

    Article  Google Scholar 

  19. G. N. Semenkova, T. A. Kulagova, Z. B. Kvacheva, et al., Neiroimmunologiya 3 (1), 23 (2005).

    Google Scholar 

  20. B. C. Dickinson and C. J. Chang, Nat. Chem. Biol. 7, 504 (2011).

    Article  Google Scholar 

  21. D. F. Stowe and A. K. S. Camara, Antioxid. Redox Signal. 11 (6), 1373 (2009).

    Article  Google Scholar 

  22. E. B. Menshchikoa, N. K. Zenkov, V. Z. Lankin, et al., Oxidative Stress: Pathological States and Diseases ARTA, Novosibirsk, 2008) [in Russian].

  23. G. U. Bae, D. W. Seo, H. K. Kwon, et al., J. Biol. Chem. 274, 32596 (1999).

    Article  Google Scholar 

  24. J. Abe, M. Okuda, Q. Huang, et al., J. Biol. Chem. 275, 1739 (2000).

    Article  Google Scholar 

  25. S. G. Rhee, Y. S. Bae, S.-R. Lee, et al., Sci. STKE 53, 1 (2000).

    Google Scholar 

  26. P. Storz, Front. Biosci. 10, 1881 (2005).

    Article  Google Scholar 

  27. T. A. Kulahava, G. N. Semenkova, Z. B. Kvacheva, et al., Cell Tissue Biol. 1 (1), 8 (2007).

    Article  Google Scholar 

  28. T. Kuznetsova, T. Kulahava, I. Zholnerevich, et al., Mol. Immunol. 87, 317 (2017).

    Article  Google Scholar 

  29. A. Lisovskaya, N. Amaegberi and G. Semenkova, Free Radic. Biol. Med. 108, S23 (2017).

    Article  Google Scholar 

  30. R. S. B. Clark, J. K. Schiding, S. L. Kaczorowski, et al., J. Neurotrauma 11, 499 (1994).

    Article  Google Scholar 

  31. C. L. Mayer, B. R. Huber, and E. Peskind, Headache. 53 (9), 1523 (2013).

    Google Scholar 

  32. N. G. Krylova, T. A. Kulagova, G. N. Semenkova, et al., Ukr. Biokhim. Zh. 81 (6),77 (2009).

    Google Scholar 

  33. W. Mu and L.-Z. Liu, React. Oxygen Species 4 (10), 251 (2017).

    Google Scholar 

  34. E. Cadenas, Mol. Aspects Med. 25, 17 (2004).

    Article  Google Scholar 

  35. P. Storz, Trends Cell Biol. 17 (1), 13 (2007).

    Article  Google Scholar 

  36. B. Vurusaner, G. Poli and H. Basaga, Free Radic. Biol. Med. 52, 7 (2012).

    Article  Google Scholar 

  37. S. Dasgupta, E. Soudry, N. Mukhopadhyay, et al., J. Cell Physiol. 227, 2451 (2012).

    Article  Google Scholar 

  38. L. B. Sullivan and N. S. Chandel, Cancer Metab. 2, 17 (2014).

    Article  Google Scholar 

  39. M. P. S. Idelchik, U. Begley, T. J. Begley, et al., Semin. Cancer Biol. 47, 57(2017).

    Article  Google Scholar 

  40. A. Meister, J. Nutrit. Sci. Vitaminol. 1992 Spec No, 1 (1992).

    Google Scholar 

  41. M. L. Circu and T. Y. Aw, Biochim. Biophys. Acta 1823, 1767 (2012).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education of the Republic of Belarus (grant no. 20170712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Semenkova.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by G. Levit

Abbreviations: GSH, reduced glutathione; 2-HD, 2-hexadecenal; ROS, reactive oxygen species; PBS, phosphate buffer saline; PI, propidium iodide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amaegberi, N.V., Semenkova, G.N., Lisovskaya, A.G. et al. Modification of Redox Processes in C6 Glioma Cells by 2-Hexadeсenal, the Product of Sphingolipid Destruction. BIOPHYSICS 64, 424–430 (2019). https://doi.org/10.1134/S0006350919030023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919030023

Navigation