Skip to main content
Log in

The Relationship between Crystallization of Water Clusters Dispersed in Sephadex Resins in their Wet Form and the Polymeric Matrix Glass Transition Temperature

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—Differential scanning calorimetry (DSC) analysis was used to study the dependences of the main parameters of crystallization and melting of small water clusters dispersed in Sephadex resins on the amount of water (30–55%) in the wet polymer. The temperatures and heats of the processes were shown to depend on the frozen water (FW) concentration in Sephadex, with the dependence being considered as a manifestation of the size effect. Hysteresis between FW melting and crystallization was detected in a certain Sephadex humidity range; i.e., Tm was higher than Tcr and Qm higher than Qcr. The two findings reflected the basic properties of low-dimensional systems. Sephadex and amorphous starch, which was examined previously, were compared as two polysaccharide systems with different structural organizations, and a significant difference was observed in FW crystallization in the systems. Nucleation and crystallite growth, which determine water crystallization, were found to occur separately in time in Sephadex with a low humidity under these experimental conditions. Nucleation occurred during cooling, while growth was observed mainly during heating. Both of the processes occurred during cooling and partly overlapped only at a high humidity, far from Tg of Sephadex. In contrast, the two processes always occurred during cooling in amorphous starch regardless of its humidity. The difference in FW crystallization was assumed to arise because water mobility differs between the systems as a result of their difference in molecular mobility of the biopolymer matrix proper near the glass transition region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. H. Roos, Phase Transitions in Foods (Academic, New York, 1995).

    Google Scholar 

  2. Water Relationships in Foods, Ed. by H. Levine and L. Slade (Plenum, New York, 1991).

    Google Scholar 

  3. Carbohydrates in Food, Ed. by A.-C. Eliasson (Marcel Dekker, New York, 1996).

    Google Scholar 

  4. H. D. Goff, in Starch in Food: Structure, Function and Applications, Ed. by A.-C. Eliasson (Woodhead Publ., Cambridge, 2004), pp. 425–427.

    Google Scholar 

  5. N. A. Grunina, G. I. Tsereteli, T. V. Belopolskaya, and O. I. Smirnova, Carbohydr. Polym. 132, 499 (2015).

    Article  Google Scholar 

  6. G. I. Tsereteli, T. V. Belopolskaya, N. A. Grunina, et al., Biofizika 62 (1), 43 (2017).

    Google Scholar 

  7. T. V. Belopolskaya, G. I. Tsereteli, N. A. Grunina, and O. I. Smirnova, Biofizika 62 (5), 696 (2017).

    Google Scholar 

  8. G. M. Mrevlishvili, Low-Temperature Calorimetry of Biological Macromolecules (Metsniereba, Tbilisi, 1984) [in Russian].

    Google Scholar 

  9. G. I. Tseretely and O. I. Smirnova, J. Therm. Anal. 38, 1189 (1992).

    Article  Google Scholar 

  10. G. I. Tsereteli, T. V. Belopolskaya, and T. N. Melnik, Biofizika 42 (1), 68 (1997).

    Google Scholar 

  11. T. V. Belopolskaya, G. I. Tsereteli, N. A. Grunina, et al., in Starch Science Progress, Ed. by L. A. Wasserman, G. E. Zaikov, P. Tomasik, et al. (Nova Science Publ. New York, 2011), pp. 1–15.

    Google Scholar 

  12. K. Tananuwong and D. S. Reid, Carbohyd. Polym. 58, 345 (2004).

    Article  Google Scholar 

  13. K. Tananuwong and D. S. Reid, J. Agric. Food Chem. 52, 4308 (2004).

    Article  Google Scholar 

  14. S. Suzuki and S. Kitamura, Food Hydrocolloids 22, 862 (2008).

    Article  Google Scholar 

  15. T. Tran, K. Thitipraphunkul, K. Piyachomkwan, et al., Starch–Stärke 60, 61 (2008).

  16. S. Park, R. A. Venditti, H. Jameel, et al., Carbohydrate Polymers 66, 97 (2006).

    Article  Google Scholar 

  17. G. N. Makarov, Usp. Fiz. Nauk 180, 185 (2010).

    Article  Google Scholar 

  18. R. S. Berry and B. M. Smirnov, Usp. Fiz. Mauk 179, 147 (2009).

    Article  Google Scholar 

  19. H. Determann, Gel Chromatography (Springer, 1969; Mir, Moscow, 1970).

  20. T. Deveny and Ya. Gergei, Amino Acids, Peptides and Proteins (Elsevier, Amsterdam, 1974; Mir. Moscow, 1976).

  21. T. G. Plachenov and S. D. Kolosentsev, Porometry (Khimiya, Leningrad, 1988) [in Russian].

    Google Scholar 

  22. Starch in Food: Structure, Function and Applications, Ed. by A.-C. Eliasson (Woodhead Publ., Cambridge, 2004).

    Google Scholar 

  23. G. I. Tsereteli, T. V. Belopolskaya, N. A. Grunina, et al., Vestn. S.-Peterb. Gos. Univ., Ser. 4, No. 2, 10 (2012).

    Google Scholar 

  24. E. Bertoft, in Starch in Food: Structure, Function and Applications, Ed. by A.-C. Eliasson (Woodhead Publ., Cambridge, 2004), pp. 57–96.

    Google Scholar 

  25. Encyclopedia of Polymers (Sovetskaya Entsiklopediya, Moscow, 1977), Vol. 4, pp. 489–497 [in Russian].

  26. Yu. K. Godovskii, Thermophysical Methods of Polymer Studies (Khimiyas, Moscow, 1976) [in Russian].

    Google Scholar 

  27. V. A. Bershtein and V. M. Egorov, Differential Scanning Calorimetry in Polymer Physicochemistry (Khimiya, Leningrad, 1990) [in Russian].

    Google Scholar 

  28. G. I. Tsereteli and O. I. Smirnova, Biofizika 34, 2243 (1989).

    Google Scholar 

  29. G. I. Tsereteli and O. I. Smirnova, Biofizika 33, 905 (1991).

    Google Scholar 

  30. G. I. Tseretely and O. I. Smirnova, J. Therm. Anal. 38, 89 (1992).

    Article  Google Scholar 

  31. G. I. Tsereteli, T. V. Belopolskaya, N. A. Grunina, et al., J. Therm. Anal. Calorim. 62, 1189 (2000).

    Article  Google Scholar 

  32. G. I. Tsereteli, T. V. Belopolskaya, and N.A. Grunina, J. Therm. Anal. Calorim. 92, 711 (2008).

    Article  Google Scholar 

  33. T. V. Belopolskaya, G. I. Tsereteli, N. A. Grunina, et al., J. Therm. Anal. Calorim. 92, 677 (2008).

    Article  Google Scholar 

  34. T. V. Belopolskaya, N. A. Grunina, G. I. Tsereteli, and O. I. Smirnova, in Starch: Progress in Structural Studies, Modifications and Applications, Ed. by P. Tomasik (Polish Society of Food Technologists, Krakow, 2004), pp. 165–176.

    Google Scholar 

  35. L. Mandelkern, Crystallization of Polymers (McGraw-Hill, New York, 1964; Khimiya, Leningrad, 1966).

  36. D. Turnbull, Solid State Phys. 3, 226 (1956).

    Google Scholar 

  37. M. A. Donald, in Starch in food: Structure, function and applications, Ed. by A.-C. Eliasson (Woodhead Publishing Limited, Cambridge, 2004), pp. 156–184.

    Google Scholar 

  38. S. Hizukuri, in Starch in Food: Structure, Function and Applications, Ed. by A.-C. Eliasson (Woodhead Publ., Cambridge, 2004), pp. 347–429.

    Google Scholar 

  39. M. A. Donald and A. J. Windle, Liqiud Crystalline Polymers (C.U.P., Cambridge, 1992).

    Google Scholar 

  40. V. P. Shibaev and A. Yu. Bobrovsky, Russ. Chem. Rev. 86 (11), 1024 (2017).

    Article  ADS  Google Scholar 

  41. M. Karel and J. Sajuy, in Water Relationships in Foods, Ed. by H. Levine and L. Slade (Plenum, New York, 1991), pp. 157–173.

    Google Scholar 

Download references

COMPLIANCE WITH ETHICAL STANDARDS

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Grunina.

Additional information

Translated by T. Tkacheva

Abbreviations: DSC, differential scanning calorimetry; FW, frozen water.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseretely, G.I., Belopolskaya, T.V., Grunina, N.A. et al. The Relationship between Crystallization of Water Clusters Dispersed in Sephadex Resins in their Wet Form and the Polymeric Matrix Glass Transition Temperature. BIOPHYSICS 64, 14–22 (2019). https://doi.org/10.1134/S0006350919010202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350919010202

Navigation