Skip to main content
Log in

The Impact of Stochastic Perturbations upon the Hydrodynamic Relationship between the Activity of Human Cardiac Ventricles and Low-Frequency Blood Flow Oscillations in the Microcirculatory Bed

  • COMPLEX SYSTEMS BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The experimentally revealed high phase coherence between low-frequency oscillations in the cutaneous blood perfusion signal at the contralateral skin sites indicates the existence of a central mechanism of its regulation. The vascular bed can be such a regulatory mechanism because it is a closed hydrodynamic system. It has been shown in this study using a mathematical model of the human cardiovascular system that the impact of low-intensity stochastic perturbations on the stiffness of the cardiac ventricles leads to the formation of low-frequency oscillations in microvascular blood flow. The results show that there is a relationship between the activity of the heart and low-frequency oscillations of microcirculatory skin blood flow, which is due to the hydrodynamic properties of the vascular bed without the involvement of autonomous control from autonomic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. U. Hoffmann, A. Yanar, U. K. Franzeck, et al., Microvasc. Res. 40 (3), 293 (1990).

    Article  Google Scholar 

  2. A. Stefanovska, M. Bracic, and H. D. Kvernmo, IEEE Trans. Biomed. Eng. 46 (10), 1230 (1999).

    Article  Google Scholar 

  3. M. E. Mück-Weymann, H.-P. Albrecht, D. Hager, et al., Microvasc. Res. 52 (1), 69 (1996).

  4. S. Bertuglia, A. Colantuoni, and M. Intaglietta, Microvasc. Res. 48 (1), 68 (1994).

    Article  Google Scholar 

  5. S.A. Landsverk, P. Kvandal, T. Kjelstrup, et al., Anesthesiology 105 (3), 478 (2006).

    Article  Google Scholar 

  6. P. Kvandal, S. A. Landsverk, A. Bernjak, et al., Microvasc. Res. 72 (3), 120 (2006).

    Article  Google Scholar 

  7. A. Bernjak, P. B. M. Clarkson, P. V. E. McClintock, et al., Microvasc. Res. 76 (3), 224 (2008).

    Article  Google Scholar 

  8. J. M. Stewart, I. Taneja, M. S. Goligorsky, et al., Microcirculation 14 (3), 169 (2007).

    Article  Google Scholar 

  9. A. V. Tankanag, A. A. Grinevich, T. V. Kirilina, et al., Microvasc. Res. 95, 53 (2014).

    Article  Google Scholar 

  10. A. V. Tankanag, A. A. Grinevich, I. V. Tikhonova, et al., Biophysics 62 (4), 629 (2017).

    Article  Google Scholar 

  11. A. A. Grinevich, A. V. Tankanag, V. G. Safronova, et al., Doklady Biol. Sci. 468, 106 (2016).

    Article  Google Scholar 

  12. A. A. Grinevich, A. V. Tankanag, and N. K. Chemeris, Math. Biol. Bioinform. 11, 233 (2016).

    Article  Google Scholar 

  13. A. A. Grinevich, A. V. Tankanag, and N. K. Chemeris, in Proc. SPIE, Saratov Fall Meet. 2016: Laser Physics and Photonics XVII and Computational Biophysics and Analysis of Biomedical Data III, 10337, 103371A (2017).

  14. M. Ursino, Am. J. Physiol. 275, H1733 (1998).

    Google Scholar 

  15. S. G. Shroff, J. S. Janicki, and K. T. Weber, Am. J. Physiol. 249, H358 (1985).

    Google Scholar 

  16. A. V. Tankanag and N. K. Chemeris, Phys. Med. Biol. 53, 5967 (2008)

    Article  Google Scholar 

  17. G. V. Krasnikov, M. Y. Tyurina, A. V. Tankanag, et al., Respir. Physiol. Neurobiol. 185 (3), 562 (2013).

    Article  Google Scholar 

  18. V. Ticcinelli, T. Stankovski, D. Iatsenko, et al., Frontiers Physiol. 8, 749 (2017).

    Article  Google Scholar 

  19. http://meduniver.com/Medical/Physiology/357.html (cited October 30, 2018).

  20. http://www.amedgrup.ru/davlen.html (cited October 30, 2018).

  21. http://www.km.ru/zdorove/encyclopedia/pokazateli-deyatelnosti-serdtsa (cited October 30, 2018).

  22. http://medbiol.ru/medbiol/anatomia/000007e7.htm (cited October 30, 2018).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-15-00248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Grinevich.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by E. Puchkov

Abbreviations: CVS, cardiovascular system; MCB, microcirculatory bed; UVR, united vascular reservoir; EHR, efficient hydrodynamic resistance; WNLFB, white noise with limited frequency band.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinevich, A.A., Tankanag, A.V. & Chemeris, N.K. The Impact of Stochastic Perturbations upon the Hydrodynamic Relationship between the Activity of Human Cardiac Ventricles and Low-Frequency Blood Flow Oscillations in the Microcirculatory Bed. BIOPHYSICS 64, 117–128 (2019). https://doi.org/10.1134/S000635091901007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091901007X

Navigation