Skip to main content
Log in

Conformational Changes in Chloroplast F1-ATPase Caused by Thiol-Dependent Activation and MgADP-Dependent Inactivation

  • CELL BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract—The state of tyrosine residues of the chloroplast coupling factor CF1 was studied by spectrophotometric titration. It was shown that some tyrosine residues of CF1 underwent deprotonation at pH values of the medium much lower than the pK of free tyrosine. The number of such residues depends on both the conformational state of the enzyme and the composition of the medium. They are abundant in CF1 with the γ-subunit that contains a disulfide bridge. Bridge reduction leads to a decrease of their number and, accordingly, an increase in the number of residues that undergo deprotonation at a pH higher than the tyrosine pK. The minimum number of residues that dissociated within the 6.0–9.0 pH range was observed in the reaction mixture containing Mg2+ or MgADP. It is assumed that the changes in pK values for tyrosine residues result from the presence or absence of positively charged amino-acid residues in their neighborhood, which is indicative of alterations in the tertiary structure of the enzyme. Deprotonation of a considerable part of tyrosine residues in the presence of Mg2+ or MgADP occurs within an abnormally narrow pH range and demonstrates the cooperative transition to the new conformational state of the enzyme. Comparison of the data obtained with our previous kinetic data indicates that the titration characteristics and the respective structures of CF1-ATPase observed in the presence of Mg2+ or MgADP result from reversible inactivation caused by MgADP binding to one catalytic site and one noncatalytic site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Noji, R. Yasuda, M. Yoshida, and K. Kinosita, Nature 386, 299 (1997).

    Article  ADS  Google Scholar 

  2. M. Futai, M. Nakanishi-Matsui, H. Okamoto, et al. Biochim. Biophys. Acta 1817, 1711 (2012).

    Article  Google Scholar 

  3. Schmidt, V. Beilsten-Edmands, S. Mohammed, and C. V. Robinson, Sci. Rep. 7, 44068 (2017).

    Article  ADS  Google Scholar 

  4. A. N. Malyan and O. I. Vitseva, Photosynthetica 24 (4), 613 (1990).

    Google Scholar 

  5. J. P. Abrahams, A. G. W. Leslie, R. Lutter and J. E. Walker, Nature 370, 621 (1994).

    Article  ADS  Google Scholar 

  6. A. N. Mal’yan, Photosynthetica 15 (4), 474 (1981).

    Google Scholar 

  7. A. N. Malyan and W. S. Allison, Biochim. Biophys. Acta 1554, 153 (2002).

    Article  Google Scholar 

  8. A. N. Malyan, Photosynth. Res. 105 (2010).

  9. A. N. Malyan and E. A. Akulova, Biokhimiya 43 (7), 1206 (1978).

    Google Scholar 

  10. A. N. Malyan, Biochim. Biophys. Acta 1607, 161 (2003).

    Article  Google Scholar 

  11. N. Nelson, Biochim. Biophys. Acta 456, 314 (1976).

    Article  Google Scholar 

  12. J. Schumann, M. L. Richter, and R. E. McCarty, J. Biol. Chem. 260, 11817 (1985).

    Google Scholar 

  13. K. E. Hightower and R. E. McCarty, Biochemistry 35, 4846 (1996).

    Article  Google Scholar 

  14. A. N. Malyan, Photosynth. Res. 61, 1 (1999).

    Article  Google Scholar 

  15. O. N. Gubanova, V. K. Opanasenko, and A. N. Malyan, Biokhimiya 59 (3), 410 (1994).

    Google Scholar 

  16. S. Lien, R. Berzborn, and E. Racker, J. Biol. Chem. 247, 3520 (1972).

    Google Scholar 

  17. A. Binder, A. Jagendorf, and E. Ngo, J. Biol. Chem. 253, 3094 (1978).

    Google Scholar 

  18. M. M. Bradford, Anal. Biochem. 72, 248 (1976).

    Article  Google Scholar 

  19. A. N. Malyan and O. I. Vitseva, Biochemistry (Moscow) 66 (4), 505 (2001).

    Article  Google Scholar 

  20. F. L. Kalinin, V P. Lobov, and V. A. Zhidkov, Handbook of Biochemistry (Naukova Dumka, Kiev, 1971) [in Russian].

    Google Scholar 

  21. A. N. Malyan and O. I. Vitseva, Biokhimiya 48 (5), 718 (1983).

    Google Scholar 

  22. S. Bernhard, The Structure and Function of Enzymes (W. A. Benjamin, Inc., New York 1968; Mir, Moscow, 1971).

  23. F. Buchert, H. Konno, and T. Hisabori, Biochim. Biophys. Acta 1847, 441 (2015).

    Article  Google Scholar 

  24. Z. Xue, and P. D. Boyer, Eur. J. Biochem. 179, 677 (1989).

    Article  Google Scholar 

  25. R. I. Feldman, and P. D. Boyer, J. Biol. Chem. 260 (24), 13088 (1985).

    Google Scholar 

  26. A. N. Malyan, Usp. Biol. Khim. 53, 297 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Malyan.

Additional information

Translated by E. Makeeva

Abbreviations: CF1, chloroplast coupling factor; DTT, dithiothreitol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malyan, A.N., Opanasenko, V.K. Conformational Changes in Chloroplast F1-ATPase Caused by Thiol-Dependent Activation and MgADP-Dependent Inactivation. BIOPHYSICS 63, 713–717 (2018). https://doi.org/10.1134/S0006350918050172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918050172

Navigation