Skip to main content
Log in

The in vitro Effect of a Magnetic Field on the Oxygen-Transport Function and the Gaseous Transmitter System in Blood

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effect of an alternating magnetic field with a magnetic flux density of 150 mT on the blood oxygen-transport function was studied. In vitro exposure of blood cells was performed following a 10-day series of in vivo exposure of the rat tail artery in combination with administration of chemical compounds that affect the formation of gaseous transmitters. In vitro exposure to a magnetic field changed the oxygen-transport function of the blood, as observed by a greater decrease in the affinity of hemoglobin for oxygen and an increase in the concentration of gaseous transmitters (nitric oxide and hydrogen sulfide). In animals to which nitroglycerin and sodium hydrosulfide were administered exposure to a magnetic field caused a shift in the oxyhemoglobin dissociation curve to the right; this effect was absent when a nonselective inhibitor of the NO synthase enzyme or an irreversible inhibitor of the cystathionine γ-lyase enzyme was added. These results suggest that the magnetic field affects the oxygen-binding properties of the blood by modifying intra-erythrocyte mechanisms that involve gaseous transmitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MF:

magnetic field

L-NAME:

N(G)-nitro-L-arginine methyl ester

ODC:

oxyhemoglobin dissociation curve

PAG:

DL-propargyl glycine; nitric oxide (NO)

References

  1. V. F. Kirichuk and A. A. Tsymbal, Terahertz Radiation: Patterns and Mechanisms of Biological Action (Saratov State Medical University, Saratov, 2015) [in Russian].

    Google Scholar 

  2. V. S. Ulashchik, Zdravookhranenie, No. 11, 21 (2015).

    Google Scholar 

  3. M. S. Markov, Electromagnetic Fields in Biology and Medicine (New York, 2015).

    Book  Google Scholar 

  4. S. A. Badzhinyan, M. G. Malakyan, D. E. Egiazaryan, et al., Radiats. Biol. Radioekol. 53 (1), 63 (2013).

    Google Scholar 

  5. R. M. Winslow, Biotechnology 33 (1), 1 (2005).

    Google Scholar 

  6. V. V. Zinchuk and N. V. Glutkina, Ross. Fiziol. Zh. im. I. M. Sechenova 99 (5), 537 (2013).

    Google Scholar 

  7. H. Mairbaurl and R. E. Weber, Amer. Physiol. Soc. Compr. Physiol. 2, 1463 (2012).

    Google Scholar 

  8. J. F. Storz, High Altitude Med. Biol. 9 (2), 148 (2008).

    Article  Google Scholar 

  9. V. V. Zinchuk and T. L. Stepuro, Biophysics (Moscow) 51 (1), 23 (2006).

    Article  Google Scholar 

  10. P. Kimura, Nitric Oxide 41, 4 (2014).

    Article  Google Scholar 

  11. S. V. Gusakova, L. V. Smagliy, Yu. G. Birulina, et al. Usp. Fiziol. Nauk 48 (1) 24 (2017).

    Google Scholar 

  12. V. V. Zinchuk, V. O. Lepeyev, and I. E. Gulyai, Ross. Fiziol. Zh. im. I. M. Sechenova 102 (10), 1176 (2016).

    Google Scholar 

  13. V. O. Lepeyev and V. V. Zinchuk, Novosti Med.-Biol. Nauk 7 (2), 96 (2013).

    Google Scholar 

  14. V. S. Kamyshnikov, Methods of Clinical Laboratory Research (MedPress-Inform, Moscow, 2016) [in Russian].

    Google Scholar 

  15. E. J. Norris, C. R. Culberson, S. Narasimhan, and M. G. Clemens, Shock 36 (3), 242 (2011).

    Article  Google Scholar 

  16. V. V. Zinchuk and V. O. Lepeyev, Fiziol. Zh. 63 (4), 30 (2017).

    Article  Google Scholar 

  17. V. S. Ulashchik, Magnetotherapy: Theoretical Basis and Practice (Belaruskaya Navuka, Minsk, 2015) [in Russian].

    Google Scholar 

  18. G. G. Artsruni, G. V. Sahakyan, and G. A. Poghosyan, Biophysics (Moscow) 58 (6), 804 (2013).

    Article  Google Scholar 

  19. T. L. Stepuro and V. V. Zinchuk, Ross. Fiziol. Zh. im. I. M. Sechenova 99 (1), 111 (2014).

    Google Scholar 

  20. G. K. Kolluru, P. K. Prasai., A. M. Kaskas, et al., J. Appl. Physiol. 120, 263 (2016).

    Article  Google Scholar 

  21. E. V. Shamova, O. D. Bichan, E. S. Drozd, et al., Biophysics (Moscow) 56 (2) 237 (2011).

    Article  Google Scholar 

  22. R. Yang, Q. Jia, X. F. Liu, et al., Mol. Med. Reports 16 (4), 5277 (2017).

    Article  Google Scholar 

  23. G. Cirino, V. Vellecco, and M. Bucci, Brit. J. Pharmacol. 174 (22), 4021 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zinchuk.

Additional information

Original Russian Text © V.V. Zinchuk, V.O. Lepeev, 2018, published in Biofizika, 2018, Vol. 63, No. 3, pp. 567–572.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinchuk, V.V., Lepeev, V.O. The in vitro Effect of a Magnetic Field on the Oxygen-Transport Function and the Gaseous Transmitter System in Blood. BIOPHYSICS 63, 436–440 (2018). https://doi.org/10.1134/S0006350918030259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918030259

Keywords

Navigation