Skip to main content
Log in

The Role of Intermolecular Disulfide Bonds in Stabilizing the Structure of Peroxiredoxins

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The comparative characterization of thermal stability of human peroxiredoxins 1–6 (Prx1–Prx6) has been performed by physicochemical and biochemical methods and the role of disulfide bonds in stabilizing their structure has been shown. Prx1 and Prx2 among the tested peroxiredoxins exhibit the highest peroxidase activity and thermal stability. Prx1 and Prx2 are more than 2 times more active on average with H2O2 and tert-butyl hydroperoxide as substrates compared to other peroxiredoxins and retain at least 50% activity after 30 min heating at a temperature of 64°C, which is more than 10°C higher compared to Prx3–Prx6. The reduction of the disulfide bonds between Prx1 and Prx2 leads to a decrease of their thermal stability, comparable to the thermal stability of Prx3–Prx6, which confirms the important role of the intermolecular S–S bonds in stabilizing the structure of these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Prx:

peroxiredoxin(s)

References

  1. A. Perkins, L. B. Poole, and P. A. Karplus, Biochemistry 53, 7693 (2014).

    Article  Google Scholar 

  2. S. G. Rhee, Mol. Cells 39, 1 (2016).

    Article  Google Scholar 

  3. E. M. Hanschmann, J. R. Godoy, C. Berndt, et al., Antioxid. Redox Signal. 19, 1539 (2013).

    Article  Google Scholar 

  4. Z. A. Wood, E. Schröder, J. R. Harris, and L. B. Poole, Trends Biochem. Sci. 28, 32 (2003).

    Article  Google Scholar 

  5. J. L. Pan and J. C. Bardwell, Protein Sci. 15, 2217 (2006).

    Article  Google Scholar 

  6. A. Perkins, K. J. Nelson, J. R. Williams, et al., Biochemistry 52, 8708 (2013).

    Article  Google Scholar 

  7. S. G. Rhee and I. S. Kil, Annu. Rev. Biochem. 85, 1 (2016).

    Article  Google Scholar 

  8. J. König, H. Galliardt, P. Jütte, et al., J. Exp. Bot. 64, 3483 (2013).

    Article  Google Scholar 

  9. F. Angelucci, A. Bellelli, M. Ardini, et al., FEBS J. 282, 2827 (2015).

    Article  Google Scholar 

  10. M. G. Sharapov, V. I. Novoselov, and V. K. Ravin, Mol. Biol. (Moscow) 43 (3), 505 (2009).

    Article  Google Scholar 

  11. S. W. Kang, I. C. Baines, and S. G. Rhee, J. Biol. Chem. 273, 6303 (1998).

    Article  Google Scholar 

  12. M. G. Sharapov, V. I. Novoselov, E. E. Fesenko, et al., Free Radic. Res. 51 (2), 148 (2017).

    Article  Google Scholar 

  13. P. L. Privalov, E. I. Tiktopulo, and N. N. Khechinashvili, Int. J. Pept. Protein Res. 5 (4), 229 (1973).

    Article  Google Scholar 

  14. N. F. Bunkin, A. V. Shkirin, N. V. Suyazov, et al., J. Phys. Chem. B 120, 1291 (2016).

    Article  Google Scholar 

  15. W. Lee, K. S. Choi, J. Riddell, et al., J. Biol. Chem. 282 (30), 22011 (2007).

    Article  Google Scholar 

  16. F. Angelucci, F. Saccoccia, M. Ardini, et al., J. Mol. Biol. 425, 4556 (2013).

    Article  Google Scholar 

  17. M. G. Sharapov, V. K. Ravin, and V. I. Novoselov, Mol. Biol. (Moscow) 48 (4), 600 (2014).

    Article  Google Scholar 

  18. T. J. Tavender, J. J. Springate, and N. J. Bulleid, EMBO J. 29, 4185 (2010).

    Article  Google Scholar 

  19. R. M. Jarvis, S. M. Hughes, and E. C. Ledgerwood, Free Radic. Biol. Med. 53, 1522 (2012).

    Article  Google Scholar 

  20. H. Nassour, Z. Wang, A. Saad, et al., Sci. Rep. 6, 29389 (2016).

    Article  ADS  Google Scholar 

  21. M. C. Sobotta, W. Liou, S. Stocker, et al., Nat. Chem. Biol. 11, 64 (2015).

    Article  Google Scholar 

  22. M. Fernandez-Caggiano, E. Schroder, H. J. Cho, et al., J. Biol. Chem. 291, 10399 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Sharapov.

Additional information

Original Russian Text © M.G. Sharapov, N.V. Penkov, S.V. Gudkov, R.G. Goncharov, V.I. Novoselov, E.E. Fesenko, 2018, published in Biofizika, 2018, Vol. 63, No. 2, pp. 232–240.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharapov, M.G., Penkov, N.V., Gudkov, S.V. et al. The Role of Intermolecular Disulfide Bonds in Stabilizing the Structure of Peroxiredoxins. BIOPHYSICS 63, 154–161 (2018). https://doi.org/10.1134/S0006350918020203

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350918020203

Keywords

Navigation