Skip to main content
Log in

Homology modeling of the transmembrane domain of the GABAA receptor

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The permeability of ion channels for ions and substances that bind inside the pore depends on the cross-sectional area of the pore. We have constructed models of the closed, open, and desensitized α1β2γ2 GABAA receptor on the basis of known structures of both prokaryotic and eukaryotic ligand-gated channels. We employed Monte Carlo energy minimization to optimize the model structures. We have found significant pore constrictions, whose diameter depends on the functional state of the receptor in the cytoplasmic, middle, and extracellular parts of the pore-forming M2 segments. It is known that the constrictions in the middle (the 9' ring of residues) and cytoplasmic (the 2' ring of residues) parts of the M2 helices form the activation and desensitization gates of the GABAA receptor. Our computations predict that the constriction in the extracellular part of the M2 helices (the 20' ring of residues) may also serve as a gate in the GABAA receptor, whose physiological role is still unclear. Our results imply that the structures of a number of prokaryotic and eukaryotic ligand-gated channels that have been found in bacteria and lower organisms can be used for homology modeling of the pore region of the human GABAA receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Hille, Ionic Channels of Excitable Membranes, 3rd ed. (Sinauer Assoc., Sunderland, MA, 2001).

    Google Scholar 

  2. W. Sieghart, Adv. Pharmacol. 54, 231 (2006).

    Article  Google Scholar 

  3. W. Hevers and H. Luddens, Mol. Neurobiol. 18 (1), 35 (1998).

    Article  Google Scholar 

  4. J. L. Galzi, A. Devillers-Thiery, N. Hussy, et al., Nature 359 (6395), 500 (1992).

    Article  ADS  Google Scholar 

  5. A. Keramidas, A. J. Moorhouse, P. R. Schofield, et al., Prog. Biophys. Mol. Biol. 86 (2), 161 (2004).

    Article  Google Scholar 

  6. C. Miller, Neuron 2 (3), 1195 (1989).

    Article  Google Scholar 

  7. R. W. Olsen, Neurochem. Res. 39 (10), 1924 (2014).

    Article  Google Scholar 

  8. L. Chen, K. A. Durkin, and J. E. Casida, Proc. Natl. Acad. Sci. U. S. A. 103 (13), 5185 (2006).

    Article  ADS  Google Scholar 

  9. A. V. Rossokhin, I. N. Sharonova, J. V. Bukanova, et al., Mol. Cell. Neurosci. 63, 72 (2014).

    Article  Google Scholar 

  10. B. E. Erkkila, A. V. Sedelnikova, and D. S. Weiss, Biophys. J. 94 (11), 4299 (2008).

    Article  ADS  Google Scholar 

  11. B. S. Zhorov and P. D. Bregestovski, Biophys. J. 78 (4), 1786 (2000).

    Article  Google Scholar 

  12. O. S. Smart, J. G. Neduvelil, X. Wang, et al., J. Mol. Graph. 14 (6), 354 (1996).

    Article  Google Scholar 

  13. E. Chovancova, A. Pavelka, P. Benes, et al., PLoS Comput. Biol. 8 (10), e1002708 (2012).

    Article  Google Scholar 

  14. M. Petrek, P. Kosinova, J. Koca, et al., Structure 15 (11), 1357 (2007).

    Article  Google Scholar 

  15. E. Yaffe, D. Fishelovitch, H. J. Wolfson, et al., Proteins 73 (1), 72 (2008).

    Article  Google Scholar 

  16. P. S. Miller and A. R. Aricescu, Nature 512 (7514), 270 (2014).

    Article  ADS  Google Scholar 

  17. X. Huang, H. Chen, K. Michelsen, et al., Nature 526 (7572), 277 (2015).

    Article  ADS  Google Scholar 

  18. J. Du, W. Lu, S. Wu, et al., Nature 526 (7572), 224 (2015).

    Article  ADS  Google Scholar 

  19. N. Bocquet, H. Nury, M. Baaden, et al., Nature 457 (7225), 111 (2009).

    Article  ADS  Google Scholar 

  20. R. E. Hibbs and E. Gouaux, Nature 474 (7349), 54 (2011).

    Article  Google Scholar 

  21. R. J. Hilf and R. Dutzler, Nature 452 (7185), 375 (2008).

    Article  ADS  Google Scholar 

  22. I. Zimmermann and R. Dutzler, PLoS Biol. 9 (6), e1001101 (2011).

    Article  Google Scholar 

  23. R. Spurny, J. Ramerstorfer, K. Price, et al., Proc. Natl. Acad. Sci. U. S. A. 109 (44), E3028 (2012).

    Article  Google Scholar 

  24. N. Bocquet, L. Prado de Carvalho, J. Cartaud, et al., Nature 445 (7123), 116 (2007).

    Article  ADS  Google Scholar 

  25. R. J. Howard, J. R. Trudell, and R. A. Harris, Pharmacol. Rev. 66 (2), 396 (2014).

    Article  Google Scholar 

  26. Z. Li and H. A. Scheraga, Proc. Natl. Acad. Sci. U. S. A. 84 (19), 6611 (1987).

    Article  ADS  Google Scholar 

  27. J. Weiner, P. A. Kollman, D. A. Case, et al., J. Am. Chem. Soc. 106, 765 (1984).

    Article  Google Scholar 

  28. D. P. Garden and B. S. Zhorov, J. Comput. Aided Mol. Des. 24 (2), 91 (2010).

    Article  ADS  Google Scholar 

  29. R. D. Shannon, Acta Crystallogr. A 32 (5), 751 (1976).

    Article  ADS  Google Scholar 

  30. P. F. Lang and B. C. Smith, Dalton Trans. 39 (33), 7786 (2010).

    Article  Google Scholar 

  31. D. E. Conway, Ionic Hydration in Chemistry and Biophysics (Elsevier, New York, 1981).

    Google Scholar 

  32. N. Unwin, J. Mol. Biol. 229 (4), 1101 (1993).

    Article  Google Scholar 

  33. A. Miyazawa, Y. Fujiyoshi, and N. Unwin, Nature 423 (6943), 949 (2003).

    Article  ADS  Google Scholar 

  34. N. Unwin, J. Mol. Biol. 346 (4), 967 (2005).

    Article  Google Scholar 

  35. M. O’Mara, B. Cromer, M. Parker, et al., Biophys. J. 88 (5), 3286 (2005).

    Article  Google Scholar 

  36. M. Ernst, S. Bruckner, S. Boresch, et al., Mol. Pharmacol. 68 (5), 1291 (2005).

    Article  Google Scholar 

  37. R. Hawthorne, B. A. Cromer, H. L. Ng, et al., J. Neurochem. 98 (2), 395 (2006).

    Article  Google Scholar 

  38. P. J. Corringer, M. Baaden, N. Bocquet, et al., J. Physiol. 588 (Pt 4), 565 (2010).

    Article  Google Scholar 

  39. A. Rossokhin, G. Teodorescu, S. Grissmer, et al., Mol. Pharmacol. 69 (4), 1356 (2006).

    Article  Google Scholar 

  40. A. Rossokhin, T. Dreker, S. Grissmer, et al., Mol. Pharmacol. 79 (4), 681 (2011).

    Article  Google Scholar 

  41. G. Hu, L. Y. Chen, and J. Wang, J. Mol. Model. 18 (8), 3731 (2012).

    Article  Google Scholar 

  42. A. V. Rossokhin and B. S. Zhorov, J. Comput. Aided Mol. Des. 30 (7), 559 (2016).

    Article  ADS  Google Scholar 

  43. P. S. Miller and T. G. Smart, Trends Pharmacol. Sci. 31 (4), 161 (2010).

    Article  Google Scholar 

  44. G. D. Cymes, Y. Ni, and C. Grosman, Nature 438 (7070), 975 (2005).

    Article  ADS  Google Scholar 

  45. J. E. Carland, A. J. Moorhouse, P. H. Barry, et al., J. Biol. Chem. 279 (52), 54153 (2004).

    Article  Google Scholar 

  46. M. Gielen, P. Thomas, and T. G. Smart, Nat. Commun. 6, 6829 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rossokhin.

Additional information

Original Russian Text © A.V. Rossokhin, 2017, published in Biofizika, 2017, Vol. 62, No. 5, pp. 866–875.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossokhin, A.V. Homology modeling of the transmembrane domain of the GABAA receptor. BIOPHYSICS 62, 708–716 (2017). https://doi.org/10.1134/S0006350917050190

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917050190

Keywords

Navigation