Skip to main content
Log in

A periodic system of chiral structures in molecular biology

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A systemic regularity of molecular biology is considered: the tendency towards alternating of the sense of chirality of intramolecular structural levels of DNA and proteins, namely, D–L–D–L for DNA and L–D–L–D for proteins, is observable starting from the level of asymmetric carbon in deoxyribose and amino acids. Helicity is a special case of chirality. In intermolecular interactions, the sense of chirality of the highest intramolecular structural level directly involved in the interaction prevails in each of the participants. The interaction of molecules of the same nature (protein–protein, DNA–RNA, tRNA–mRNA, and ribozymes) mainly occurs in the case of the same sense of chirality, either L–L or D–D, and for molecules of different types (DNA–protein, tRNA–amino acids, and enzyme–substrate), in the case of different senses of chirality, either D–L or L–D. An alternating sense of the chiral hierarchy of conjugated levels of macromolecular structures in proteins and nucleic acids is of general biological importance: it determines the discreteness of levels, serves as a tool of folding, and provides a structural basis for “preferred collective” (or “macroscopic mechanical”) degrees of freedom in the design of macromolecular machines, as well as being one of the mechanisms of blockwise/saltatory development of the evolutionary process. A new fundamental concept is proposed: the homochirality of primary structures of DNA and proteins determines the amount of the entropic component of the free energy, which is used in the processes of folding and molecular rearrangements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Tverdislov, arXiv:1211.4272 (2012).

    Google Scholar 

  2. V. I. Goldansky and V. V. Kuzmin, Usp. Fiz. Nauk 157 (1), 3 (1989).

    Article  Google Scholar 

  3. V. A. Tverdislov, L. V. Yakovenko, A. A. Ivlieva, and I. L. Tverdislova, Vestn. Mosk Gos. Univ., Ser. 3: Fiz. Astron. No. 2, 3 (2011).

    Google Scholar 

  4. V. A. Tverdislov, A. E. Sidorova, and L. V. Yakovenko, Biophysics (Moscow) 57 (1), 120 (2012).

    Article  Google Scholar 

  5. V. A. Tverdislov, Biophysics (Moscow) 58 (1), 128 (2013).

    Article  Google Scholar 

  6. V. A. Tverdislov, E. V. Malyshko, S. A. Ilchenko, Izv. Akad. Nauk, Ser. Fiz. 79 (3), 1728 (2015).

    Google Scholar 

  7. D. S. Chernavsky, Usp. Fiz. Nauk 170 (2), 157 (2000).

    Article  Google Scholar 

  8. A. V. Finkelstein and O. B. Ptitsyn, Protein Physics (KDU, Moscow, 2002; Academic Press, New York, 2002).

    Google Scholar 

  9. A. V. Batyanovskii, I. D. Volotovsky, V. A. Namiot, et al., Biophysics (Moscow) 60 (3), 348 (2015).

    Article  Google Scholar 

  10. A. V. Batyanovskii, V. A. Namiot, I. V. Filatov, et al., Biophysics (Moscow) 58 (6), 841 (2013).

    Article  Google Scholar 

  11. V. A. Namiot, A. V. Batyanovskii, I. V. Filatov, et al., Biophysics (Moscow) 61 (1), 47 (2016).

    Article  Google Scholar 

  12. J. S. Richardson, Adv. Prot. Chem. 34, 167 (1981).

    Article  Google Scholar 

  13. A. Lupas and M. Gruber, Adv. Prot. Chem. 70, 37 (2005).

    Article  Google Scholar 

  14. Y. B. Yu, Adv. Drug Delivery Rev. 54, 1113 (2002).

    Article  Google Scholar 

  15. T. A. Waigh, Applied Biophysics: A Molecular Approach for Physical Scientists (Wiley, Manchester, 2007; Intellekt, Dolgoprudnyi, 2010).

    Google Scholar 

  16. V. I. Lobyshev and A. B. Solovey, Biophysics (Moscow) 56 (5), 816 (2011).

    Article  Google Scholar 

  17. E. Moutevelis and D. Woolfson, J. Mol. Biol. 385, 726 (2009).

    Article  Google Scholar 

  18. H. M. Berman, J. Westbrook, Z. Feng, et al., Nucleic Acids Res. 28, 235 (2000). http://www.rcsb.org.

    Article  Google Scholar 

  19. O. D. Testa, E. Moutevelis, and D. N. Woolfson, Nucleic Acids Res. 37. D315 (2009).

    Article  Google Scholar 

  20. J. Peters, W. Baumeister, and A. Lupas, J. Mol. Biol. 257, 1031(1996).

    Article  Google Scholar 

  21. D. A. D. Parry, R. D. B. Fraser, and J. M. Squire, J. Struct. Biol. 163, 258 (2008).

    Article  Google Scholar 

  22. G. M. Cooper, The Cell: A Molecular Approach, 2nd ed. (ASM Press, Washington, 2000).

    Google Scholar 

  23. I. A. Nevzorov and D. I. Levitskii, Usp. Biol. Khim. 51, 283 (2011).

    Google Scholar 

  24. H. Lodish, A. Berk, S. L. Zipursky, et al., Molecular Cell Biology, 4th ed. (W. H. Freeman, New York, 2000).

    Google Scholar 

  25. B. V. Gromov, The Structure of Bacteria (Leningrad State Univ., Leningrad, 1985) [in Russian].

    Google Scholar 

  26. K. Tamura, Int. J. Mol. Sci. 12, 4745 (2011). doi 103390/ijms12074745

    Article  Google Scholar 

  27. R. Breslow, M. Levine, and Zh. L. Cheng, Orig. Life Evol. Biosph. 40, 11 (2010). doi 10.1007/s11084-009-9179-0

    Article  ADS  Google Scholar 

  28. G. F. Joyce, G. M. Visser, C. A. A. Van Boechel, et al., Nature 310, 602 (1984).

    Article  ADS  Google Scholar 

  29. A. Wochner, J. Attwater, A. Coulson, and P. Holliger, Science 332, 209 (2011).

    Article  ADS  Google Scholar 

  30. J. Attwater, A. Wochner, and P. Holliger, Nature Chem. 5, 1011 (2013).

    Article  ADS  Google Scholar 

  31. J. T. Sczepanski and G. F. Joyce, Nature 515, 440 (2014). doi 10.1038/nature13900

    Article  ADS  Google Scholar 

  32. J. Boch and U. Bonas, Phytopathology 48 (1), 419 (2010).

    Article  Google Scholar 

  33. A. Richter, J. Streusel, C. Blucher, et al., Nat. Comm. 5, 3447 (2014). doi 10.1038/ncomms4447

    Article  Google Scholar 

  34. J. T. Finch and A. Klug, Proc. Natl. Acad. Sci. USA. 73 (6), 1897 (1976).

    Article  ADS  Google Scholar 

  35. B. Dorigo, T. Schalch, A. Kulangara, et al., Science 306 (5701), 1571 (2004).

    Article  ADS  Google Scholar 

  36. B. Alberts, A. Johnson, J. Lewis, et al., Molecular Biology of the Cell, 4th ed. (Garland Science, New York, 2002).

    Google Scholar 

  37. A. K. Golov, S. V. Razin, and A. A. Gavrilov, Biopolym. Cell 30 (6), 413 (2014).

    Article  Google Scholar 

  38. G. R. Ivanitsky, A. A. Deev, and E. P. Khizhnyak, Usp. Fiz. Nauk 175 (11), 1207 (2005).

    Article  Google Scholar 

  39. Fundamental and Applied Problems of the Vortex Theory, Ed. by A. V. Borisov, I. S. Mamaev, and M. S. Sokolovskii (Inst. Computer Res., Moscow–Izhevsk, 2003) [in Russian].

  40. S. V. Stovbun, A. A. Skoblin, and V. A. Tverdislov, Biophysics (Moscow) 59 (6), 876 (2014).

    Article  Google Scholar 

  41. S. V. Stovbun, M. G. Mikhaleva, A. A. Skoblin, and V. A. Tverdislov, Structure Formation in Chiral Systems: Supramolecular Strings, Ed. by V. A. Tverdislov (Moscow State Univ., Moscow) [in Russian].

  42. N. Nandi and D. Vollhardt, Chem. Rev. 103, 4033 (2003).

    Article  Google Scholar 

  43. P. B. Basnet, P. Mandal, D. W. Malcolm, et al., Soft Matter 2013 (9), 1437. doi 10.1039/C2SM26771C

    Google Scholar 

  44. N. Nandi and B. Bagchi, J. Phys. Chem. A 101, 1343 (1997).

    Article  Google Scholar 

  45. The Structure of Biological Membranes, 2nd ed., Ed. by Ph. L. Yeagle (CRC Press LLC, 2005).

  46. I. Dirking, Symmetry 6, 444 (2014). doi 10.3390/sym6020444

    Article  Google Scholar 

  47. V. P. Shibaev, Priroda (Moscow) No. 1, 61 (2012).

    Google Scholar 

  48. Yu. M. Evdokimov, Vestn. Ross. Akad. Nauk 73 (8), 712 (2003).

    Google Scholar 

  49. F. Livolant and A. Leforestier, Progr. Polymer Sci. 21 (6), 1115 (1996).

    Article  Google Scholar 

  50. C. Levinthal, Proc. Meeting Held at Allerton House, Ed. by J. T. P. DeBrunner and E. Munck (University of Illinois, Monticello, Illinois, 1969).

  51. A. V. Finkelstein and S. O. Garbuzinskiy, Biophysics (Moscow) 61 (1), 1 (2016).

    Article  Google Scholar 

  52. K. V. Shaitan and I. V. Fedik, Biophysics (Moscow) 60 (3), 335 (2015).

    Article  Google Scholar 

  53. K. V. Shaitan, M. A. Lozhnikov and G. M. Kobelkov, Biophysics (Moscow) 61 (4), 531 (2016).

    Article  Google Scholar 

  54. D. E. Metzler, Biochemistry. The Chemical Reactions of Living Cells, 2nd ed. (Elsevier, 2003), Vol.2.

  55. A. C. Olson, J. N. Patro, M. Urban, and R. D. Kuchta, J. Am. Chem. Soc. 135 (4), 1204 (2013).

    Article  Google Scholar 

  56. L. A. Blumenfeld, Solvable and Unsolvable Problems in Biological Physics (URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  57. V. A. Tverdislov, A. N. Tikhonov, and L. V. Yakovenko, Physical Mechanisms of Biological Membrane Functioninf (Moscow State Univ., Moscow, 1987) [in Russian].

    Google Scholar 

  58. S. Yu. Rutman, E. Yu. Simonenko, and V. A. Tverdislov, in Proc. 14th Annual Young Scientists Conf. of Institute of Biochemical Physics, Russian Academy of Sciences (Moscow, 2014), pp. 186–188.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tverdislov.

Additional information

Original Russian Text © V.A. Tverdislov, E.V. Malyshko, S.A. Il’chenko, O.A. Zhulyabina, L.V. Yakovenko, 2017, published in Biofizika, 2017, Vol. 62, No. 3, pp. 421–432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tverdislov, V.A., Malyshko, E.V., Il’chenko, S.A. et al. A periodic system of chiral structures in molecular biology. BIOPHYSICS 62, 331–341 (2017). https://doi.org/10.1134/S0006350917030228

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350917030228

Keywords

Navigation