Skip to main content
Log in

On the nature of the domination of oligomeric (dA:dT) n tracts in the structure of eukaryotic genomes

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The comparative analysis of the frequency of oligomeric W- and S-tracts was conducted in the genomes of different eukaryotic species that differ in their GC-composition. The domination of mononucleotide and mixed (A/T) n -sequences compared with (G/C) n -sequences was detected in the studied eukaryotic genomes, including Dictyostelium discoideum (GC ~ 25.7%), Caenorhabditis elegans (GC ~ 36.9%), Arabidopsis thaliana (GC ~ 38.0%), Drosophila melanogaster (GC ~ 38.8%), Homo sapiens (GC ~ 40.0%), Gallus gallus (GC ~ 50.0%), Leishmania major (GC ~ 59.1%). Using the results of quantum–chemical calculations, a theoretical rationale of the important role of existing differences in the initial hidden structural polymorphism of the hydrogen bonding of the Watson–Crick AT and GC pairs in the development of this phenomenon is given. It is concluded that a decreased structural polymorphism of AT pairs compared with the high fourfold polymorphism of the main state of GC pairs may be the most probable source of the preference and reliability of the “use” of AT pairs by nature in genomic DNA of many species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhou, J. W. Bizzaro, and K. A. Marx, BMC Genomics 5, 95 (2004).

    Article  Google Scholar 

  2. A. Eyre-Walker and L. D. Hurst, Nat. Rev. Genet. 2 (7), 549 (2001).

    Article  Google Scholar 

  3. J. Bohlin, E. Skjerve, and D. W. Ussery, PLoS Comput. Biol. 4 (4), e1000057 (2008)

    Article  ADS  Google Scholar 

  4. C. E. Singer and B. N. Ames, Science 170, 822 (1970).

    Article  ADS  Google Scholar 

  5. H. Musto, H. Naya, A. Zavala, et al., FEBS Lett. 573, 73 (2004).

    Article  Google Scholar 

  6. H. Musto, H. Naya, A. Zavala, et al., Biochem. Biophys. Res. Commun. 347, 1 (2006).

    Article  Google Scholar 

  7. J. L. Oliver and A. Marin, J. Mol. Evol. 43, 216 (1996).

    Article  Google Scholar 

  8. K. U. Foerstner, C. von Mering, S. D. Hooper, and P. Bork, EMBO Rep. 6, 1208 (2005).

    Article  Google Scholar 

  9. N. Sueoka, J. Mol. Evol. 37, 137 (1993).

    Article  Google Scholar 

  10. G. Kudla, L. Lipinski, F. Caffin, et al., PLoS Biol. 4, e180 (2006).

    Article  Google Scholar 

  11. H. Nishida, Curr. Issues Mol. Biol. 15, 19 (2013).

    Google Scholar 

  12. H. Wu, Z. Zhang, S. Hu, and J. Yu, Biol. Direct 7 (2), 1 (2012).

    Google Scholar 

  13. D. W. Ussery, T. M. Wassenaar, and S. B. Borini, Computing for Comparative Microbial Genomics (Springer-Verlag, London, 2009).

    Book  Google Scholar 

  14. S. Karlin and J. Mrazek, Proc. Natl. Acad. Sci. USA. 94, 10227 (1997).

    Article  ADS  Google Scholar 

  15. G. Bernardi, Structural and Evolutionary Genomics. Natural Selection in Genome Evolution (Elsevier, Amsterdam, 2004).

    Google Scholar 

  16. A. Cornish-Bowden, Nucleic Acids Res. 13, 3021 (1985).

    Article  Google Scholar 

  17. K. A. Marx, S. T. Hess, and R. D. Blake, J. Biomol. Struct. Dyn. 11, 57 (1993).

    Article  Google Scholar 

  18. T. Coenye and P. Vandamme, DNA Res. 12, 221 (2005).

    Article  Google Scholar 

  19. J. A. Subirana and X. Messeguer, J. Theor. Biol. 283, 28 (2011).

    Article  Google Scholar 

  20. K. A. Marx, Y. Zhou, and I. Q. Kishawi, J. Biomol. Struct. Dyn. 23, 429 (2006).

    Article  Google Scholar 

  21. J. A. Subirana and X. Messeguer, Nucleic Acids Res. 38 (4), 1172 (2010)

    Article  Google Scholar 

  22. G. Yagil, J. Mol. Evol. 37, 123 (1993).

    Article  Google Scholar 

  23. G. Yagil, Genomics 87, 591 (2006).

    Article  Google Scholar 

  24. B. Shomer and G. Yagil, Nucleic Acids Res. 27, 4491 (1999).

    Article  Google Scholar 

  25. S. S. Kiselev, V. M. Komarov, I. S. Masulis, and O N. Ozolin’, Komp’yut. Issled. Model. 2 (2), 183 (2010).

    Google Scholar 

  26. S. S. Kiselev, Candidate’s Dissertation in Biology (Pushchino, 2012).

    Google Scholar 

  27. F. Piazza and P. Lio, Physica A 347, 472 (2005).

    Article  ADS  Google Scholar 

  28. K. J. Dechering, K. Cuelenaere, R. N. H. Konings, and J. A. M. Leunissen, Nucleic Acids Res. 26, 4056 (1998).

    Article  Google Scholar 

  29. V. M. Komarov and N. G. Mevkh, Zh. Phys. Khim. 69 (8), 1419 (1995).

    Google Scholar 

  30. V. M. Komarov, Biophysics (Moscow) 43 (6), 917 (1998).

    Google Scholar 

  31. V. M. Komarov, J. Biol. Phys. 24, 167 (1999).

    Article  Google Scholar 

  32. A. V. Kabanov and V. M. Komarov, Int. J. Quantum Chem. 88 (5), 579 (2002).

    Article  Google Scholar 

  33. http://www.ncbi.nlm.nih.gov/genbank/

  34. ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens.

  35. V. Murray, Comput. Biol. Chem. 54, 13 (2015).

    Article  Google Scholar 

  36. E. A. Worthey, A. Schnaufer, G. Aggarwal, et al., Nucleic Acids Res. 31 (14), 4201 (2003).

    Article  Google Scholar 

  37. R. D. Brown, D. N. Godfrey, D. McNaughton, and A. P. Pierlot, J. Am. Chem. Soc. 111, 2308 (1989).

    Article  Google Scholar 

  38. R. D. Brown, D. N. Godfrey, D. McNaughton, and A. P. Pierlot, Chem. Phys. Lett. 156, 61 (1989).

    Article  ADS  Google Scholar 

  39. V. M. Komarov and R. V. Polozov, Biofizika 35 (2), 367 (1990).

    Google Scholar 

  40. J. Sponer and P. Hobza, J. Phys. Chem. 98, 3161 (1994).

    Article  Google Scholar 

  41. J. Sponer and P. Hobza, Int. J. Quant. Chem. 57, 959 (1996).

    Article  Google Scholar 

  42. V. M. Komarov and R. V. Polozov, Z. Natuforsch. 42c, 1080 (1990).

    Google Scholar 

  43. V. M. Komarov, R. V. Polozov, and G. G. Konoplev, J. Theor. Biol. 155, 281 (1992).

    Article  Google Scholar 

  44. V. M. Komarov, A. V. Kabanov, Yu. A. Lazarev, and A. V. Shapovalov, Matemat. Komp’yut. Obpaz. 6 (2), 405 (1999).

    Google Scholar 

  45. P. Hobza and C. Sandorfy, J. Am. Chem. Soc. 109, 1302 (1987)

    Article  Google Scholar 

  46. C. C. Wilson, Nucleic Acids Res. 15, 8577 (1987).

    Article  Google Scholar 

  47. C. C. Wilson and P. Tollin, Nucleosides Nucleotides 6, 643 (1987).

    Article  Google Scholar 

  48. C. C. Wilson, Nucleosides Nucleotides 9, 479 (1990).

    Article  Google Scholar 

  49. J. Jursa and J. Kypr, Gen. Physiol. Biophys. 12 (5), 401 (1993).

    Google Scholar 

  50. J. R. Roscioli and D. W. Pratt, Proc. Natl. Acad. Sci. USA. 100, 13752 (2003).

    Article  ADS  Google Scholar 

  51. http://classic.chem.msu.su/gran/gamess/.

  52. P. Hobza and J. Poner, Chem. Rev. 99 (11), 3247 (1999).

    Article  Google Scholar 

  53. V. I. Danilov and V. M. Anisimov, Biopolym. Cell. 20 (1–2), 71 (2004).

    Article  Google Scholar 

  54. V. I. Danilov, D. M. Hovorun, and N. Kurita, Biopolim. Klitina 21 (1), 70 (2005).

    Google Scholar 

  55. A. R. Srinivasan, R. R. Sauers, M. O. Fenley, et al., Biophys. Rev. 1, 13 (2009).

    Article  Google Scholar 

  56. V. M. Komarov, Biophysics 43 (6), 917 (1998).

    Google Scholar 

  57. V. M. Schaibley, M. Zawistowski, D. Wegmann, et al., Genome Res. 23, 1974 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Komarov.

Additional information

Original Russian Text © A.A. Samchenko, S.S. Kiselev, A.V. Kabanov, M.S. Kondratjev, V.M. Komarov, 2016, published in Biofizika, 2016, Vol. 61, No. 6, pp. 1045–1058.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samchenko, A.A., Kiselev, S.S., Kabanov, A.V. et al. On the nature of the domination of oligomeric (dA:dT) n tracts in the structure of eukaryotic genomes. BIOPHYSICS 61, 813–824 (2016). https://doi.org/10.1134/S0006350916060233

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916060233

Keywords

Navigation