Skip to main content
Log in

The role of intracellular zinc in H2O2-induced oxidative stress in human erythrocytes

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

In vitro exposure of human erythrocytes to H2O2 at concentrations of 30–1000 μM resulted in a dose-dependent increase of the intracellular levels of Zn2+ and inhibition of the cytosolic esterase activity, which is a major marker of erythrocyte viability. The observed effect depended on the concentration of H2O2 and the duration of exposure of the cells to this compound. An inverse relationship between the changes in the intracellular level of labile zinc ions and esterase activity in the cells exposed to hydrogen peroxide was detected; this was indicative of the role of Zn2+ in the programmed death of red blood cells. The combined action of hydrogen peroxide and N',N'-tetrakis-(2-pyridyl-methyl)-ethylenediamine, an intracellular zinc ion chelator, has been found to eliminate the cytotoxic effect of H2O2, whereas the addition of Zn2+ to the erythrocyte incubation medium enhanced the effects of hydrogen peroxide. The reduction of the concentration of non-protein thiol groups due to a decrease of the level of reduced glutathione was shown to contribute to the release of Zn2+ from the intracellular binding sites during oxidative stress induced by H2O2 in human erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TPEN, N’:

N’-tetrakis-(2-pyridyl-methyl)-ethylenediamine

NEM:

N-ethylmaleimide

NAC:

N-acetyl-L-cysteine

GSH:

reduced glutathione

References

  1. Yu. M. Harmaza and E. I. Slobozhanina, Biophysics (Moscow) 59 (2), 264 (2014).

    Article  Google Scholar 

  2. J. M. Berg, Science 271 (5252), 1081 (1996).

    Article  ADS  Google Scholar 

  3. E. Okazaki, L. Chikahisa, K. Kanemaru, and Y. Oyama, Jpn. J. Pharmacol. 71 (4), 273 (1996).

    Article  Google Scholar 

  4. Y. Sakanashi, T. M. Oyama, Y. Matsuo, et al., Toxicol. In Vitro 23 (2), 338 (2009).

    Article  Google Scholar 

  5. Yu. M. Harmaza, A. V. Tamashevskii, N. V. Goncharova, and E. I. Slobozhanina, Novosti Mev.-Biol. Nauk 3 (1), 90 (2011).

    Google Scholar 

  6. Y. Harmaza and E. Slobozhanina, FEBS J. 280 (1), 218 (2013).

    Google Scholar 

  7. Yu. M. Harmaza, Candidate’s thesis in Biology (Minsk, 2011).

    Google Scholar 

  8. D. J. Eide, Biochim. Biophys. Acta 1763, 711 (2006).

    Article  Google Scholar 

  9. K. R. Gee, Z. L. Zhou, D. Ton-That, et al., Cell Calcium 31 (5), 245 (2002).

    Article  Google Scholar 

  10. A. R. Kay, BMC Physiol. 4 (4), 1 (2004).

    MathSciNet  Google Scholar 

  11. D. Bratosin, L. Mitrofan, C. Palli, and J. Estaquier, Cytometry A 66A, 78 (2005).

    Article  Google Scholar 

  12. G. L. Ellman, Arch. Biochem. Biophys. 82 (1), 70 (1959).

    Article  Google Scholar 

  13. V. M. Moin, Lab. Delo 12, 724 (1986).

    Google Scholar 

  14. M. A. Korolyuk, L. I. Ivanova, I. G. Mayorova, and V. E. Tokoreva, Lab. Delo 1, 16 (1988).

    Google Scholar 

  15. O. G. Shevchenko and L. N. Shishkina, Usp. Sovrem. Biol. 134 (2), 133 (2014).

    Google Scholar 

  16. E. I. Slobozhanina, L. M. Luk’yanenko, and N. M. Kozlova, Biophysics (Moscow) 45 (2), 281 (2000).

    Google Scholar 

  17. A. Yesilkaya, A. Yegin, G. Yucel, et al., Int. J. Clin. Lab. Res. 26, 60 (1996).

    Article  Google Scholar 

  18. M. G. Malakyan, S. A. Badjinyan, L. A. Vardevavyan, et al., Khim. Farm. Zh. 43 (1), 8 (2009).

    Google Scholar 

  19. T. Akerboom and H. Sies, in Glutathione: Metabolism and Physiological Functions, Ed. by E. J. Vina (CRC Press, Boston, 1990).

  20. T. J. Simons, J. Membr. Biol. 123, 63 (1991).

    Article  Google Scholar 

  21. E. I. Belevich, D. G. Kostin, and E. I. Slobozhanina, Izv. Nats. Akad. Nauk Belarusi, Ser. Biol. Nauk 2, 34 (2015).

    Google Scholar 

  22. M. Ilbert, P. C. Graf, and U. Jakob, Antioxid. Redox. Signal 8 (5–6), 835 (2006).

    Article  Google Scholar 

  23. J. E. Raftos, S. Whillier, B. E. Chapman, and P. W. Kuchel, Int. J. Biochem. Cell Biol. 39 (9), 1698 (2007).

    Article  Google Scholar 

  24. D. Yildiz and T. Bagdadioglu, Toxicol. Mech. Methods 14, 241 (2004).

    Article  Google Scholar 

  25. N. G. Palmen and C. T. Evelo, Toxicol. In Vitro 10, 273 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Harmaza.

Additional information

Original Russian Text © Yu.M. Harmaza, A.V. Tamashevski, Yu.S. Kanash, G.P. Zubritskaya, A.G. Kutko, E.I. Slobozhanina, 2016, published in Biofizika, 2016, Vol. 61, No. 6, pp. 1149–1158.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harmaza, Y.M., Tamashevski, A.V., Kanash, Y.S. et al. The role of intracellular zinc in H2O2-induced oxidative stress in human erythrocytes. BIOPHYSICS 61, 950–958 (2016). https://doi.org/10.1134/S0006350916060087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916060087

Keywords

Navigation