Skip to main content
Log in

The role of selenium and selenocysteine-containing proteins in the mammalian male reproductive system

  • Molecular Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

This review summarizes the results of recent studies in which the role of selenium has been addressed by investigating the functions and biochemical properties of mammalian selenocysteine-containing proteins and their involvement in maintaining the normal function of the male reproductive system. Selenium is an essential trace element; its deficiency leads to serious diseases, including male infertility disorders, prostate cancer, testicular cancer, etc. A total of 25 selenocysteine-containing proteins are known now, and almost half of them occur in the testis, highlighting the significance of the issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Wessjohann, A. Schneider, M. Abbas, and W. Brandt, J. Biol. Chem. 388, 997 (2007).

    Google Scholar 

  2. E. S. Arnér, Exp. Cell Res. 316, 1296 (2010).

    Article  Google Scholar 

  3. C. Jacob, G. I. Giles, N. M. Giles, and H. Sies, J. Angew. Chem. Int. Ed. Engl. 42, 4742 (2003).

    Article  Google Scholar 

  4. L. Johansson, G. Gafvelin, and E. S. Arnér, Biochim. Biophys. Acta 1726, 1 (2005).

    Article  Google Scholar 

  5. M. Wada, S.-I. Nobuki, Y. Tenkyuu, et al., J. Organomet. Chem. 580, 282 (1999).

    Article  Google Scholar 

  6. J. C. Pleasants, W. Guo, and D. L. Rabenstein, J. Am. Chem. Soc. 111, 6553 (1989).

    Article  Google Scholar 

  7. L. Flohe, W. A. Gunzler, and H. H. Schock, FEBS Lett. 32, 132 (1973).

    Article  Google Scholar 

  8. J. T. Rotruck, A. L. Pope, H. E. Ganther, et al., Science 179, 588 (1973).

    Article  ADS  Google Scholar 

  9. H. Puzanowska-Tarasiewicz, L. Kuz’micka, and M. Tarasiewicz, Pol. Merkur. Lekarski 27, 249 (2009).

    Google Scholar 

  10. V. N. Gladyshev, K. T. Jeang, and T. C. Stadtman, Proc. Natl. Acad. Sci. USA. 93, 6146 (1996).

    Article  ADS  Google Scholar 

  11. T. Tamura and T. C. Stadtman, Proc. Natl. Acad. Sci. USA. 93, 1006 (1996).

    Article  ADS  Google Scholar 

  12. S. Gromer, J. Wissing, D. Behne, et al., J. Biochem. 332, 591 (1998).

    Article  Google Scholar 

  13. G. V. Kryukov, S. Castellano, S. V. Novoselov, et al., Science 300, 1439 (2003).

    Article  ADS  Google Scholar 

  14. K. Schwarz and C. M. Foltz, J. Am. Chem. Soc. 79, 3292 (1957).

    Article  Google Scholar 

  15. R. Shalgi, J. Seligman, and N. S. Kosower, Biol. Reprod. 40, 1037 (1989).

    Article  Google Scholar 

  16. I. Rosenfeld, Wyoming Agric. Exp. Sta. Bull. 414, 64 (1964).

    Google Scholar 

  17. D. G. Brown and R. F. Burk, J. Nutr. 103, 102 (1973).

    Google Scholar 

  18. L. Flohe, Biol. Chem. 388, 987 (2007).

    Article  Google Scholar 

  19. H. D. Vlajinac, J. M. Marinkovic, M. D. Ilic, and N. I. Kocev, Eur. J. Cancer 33, 101 (1997).

    Article  Google Scholar 

  20. M. Heinonen, A. Leppävuori, and S. Pyörälä, Anim. Reprod. Sci. 11, 235 (1998).

    Article  Google Scholar 

  21. M. Etminan, J. M. FitzGerald, M. Gleave, and K. Chambers, Cancer Causes Control 16, 1125 (2005).

    Article  Google Scholar 

  22. M. A. Nelson, M. Reid, A. J. Duffield-Lillico, and J. R. Marshall, Urol. Clin. North. Am. 29, 67 (2002).

    Article  Google Scholar 

  23. D. L. McCormick, K. V. Rao, W. D. Johnson, et al., Cancer Prev. Res. (Phila.) 3, 381 (2010).

    Article  Google Scholar 

  24. R. A. Sunde, J. Annu.Rev. Nutr. 10, 451 (1990).

    Article  Google Scholar 

  25. I. H. Waschulewski and R. A. Sunde, J. Nutr. 118, 367 (1988).

    Google Scholar 

  26. J. R. Arthur, Cell Moll. Life Sci. 57, 1825 (2000).

    Article  Google Scholar 

  27. F. F. Chu, J. H. Doroshow, and R. S. Esworthy, J. Biol. Chem. 268, 2571 (1993).

    Google Scholar 

  28. K. Takahashi, M. Akasaka, Y. Yamamoto, et al., J. Biochem. 108, 145 (1990).

    Google Scholar 

  29. J. Y. Choi, M. L. Neuhouser, M. Barnett, et al., Cancer Epidemiol. Biomarkers Prev. 16, 1115 (2007).

    Article  Google Scholar 

  30. Z. Arsova-Sarafinovska, N. Matevska, A. Eken, et al., Int. Urol. Nephrol. 41, 63 (2009).

    Article  Google Scholar 

  31. F. F. Chu, R. S. Esworthy, and J. H. Doroshow, Free Radic. Biol. Med. 36, 1481 (2004).

    Article  Google Scholar 

  32. B. L. Emmink, J. Laoukili, A. P. Kipp, et al., Cancer Res. 74, 6717 (2014).

    Article  Google Scholar 

  33. S. Yoshimura, K. Watanabe, H. Suemizu, et al., J. Biochem. 109, 918 (1991).

    Google Scholar 

  34. C. Schmutzler, B. Mentrup, L. Schomburg, et al., J. Biol. Chem. 388, 1053 (2007).

    Google Scholar 

  35. J. K. Christman, Oncogene 21, 5483 (2002).

    Article  Google Scholar 

  36. R. Brigelius-Flohé, J. Biol. Chem. 387, 1329 (2006).

    Google Scholar 

  37. L. C. Clark, G. F. Combs, B. W. Turnbull, et al., J. Am. Med. Assoc. 276, 1957 (1996).

    Article  Google Scholar 

  38. M. Maiorino, J. B. Wissing, R. Brigelius-Flohé, et al., FASEB J. 12, 1359 (1998).

    Google Scholar 

  39. S. Y. Nam, M. Fujisawa, J. S. Kim, et al., Biol. Reprod. 58, 1272 (1998).

    Article  Google Scholar 

  40. F. Bauche, B. Fouchard, and B. Jégou, FEBS Lett. 349, 392 (1994).

    Article  Google Scholar 

  41. R. Shalgi, J. Seligman, and N. S. Kosower, Biol. Reprod. 40, 1037 (1989).

    Article  Google Scholar 

  42. H. Pfeifer, M. Conrad, D. Roethlein, et al., FASEB J. 15, 1236 (2001).

    Article  Google Scholar 

  43. T. Pushpa Rekha, L. M. Burdsal, G. M. Chilsom, and D. M. Driscoll, J. Biol. Chem. 270, 26993 (1985).

    Article  Google Scholar 

  44. A. Roveri, F. Ursini, L. Flohe, and M. Maiorino, Biofactors 14, 213 (2001).

    Article  Google Scholar 

  45. F. Ursini, M. Maiorino, R. Brigelius-Flohe, et al., Methods Enzymol. 252, 38. (1995).

    Article  Google Scholar 

  46. F. Ursini, S. Heim, M. Kiess, et al., Science 277, 1393 (1999).

    Article  Google Scholar 

  47. M. Maiorino, A. Roveri, L. Benazzi, et al., J. Biol. Chem. 280, 38395 (2005).

    Article  Google Scholar 

  48. M. Schneider, H. Förster, A. Boersma, et al., FASEB J. 23, 3233 (2009).

    Article  Google Scholar 

  49. E. S. Arnér and A. Holmgren, Eur. J. Biochem. 267, 6102 (2000).

    Article  Google Scholar 

  50. J. Lu and A. Holmgren, Free Radic. Biol. Med. 66, 75 (2014).

    Article  Google Scholar 

  51. E. S. Arnér, Biochim. Biophys. Acta 1790, 495 (2009).

    Article  Google Scholar 

  52. A. K. Rundlof and E. S. Arnér, Antioxid. Redox Signal. 6, 41 (2004).

    Article  Google Scholar 

  53. A. K. Rundlof, M. Janard, A. Miranda-Vizuete, and E. S. Arnér, Free Radic. Biol. Med. 36, 641 (2004).

    Article  Google Scholar 

  54. L. Li, M. A. Fath, P. M. Scarbrough, et al., Redox Biol. 4, 127 (2015).

    Article  Google Scholar 

  55. J. L. Mohler, T. L. Morris, O. H. Ford, et al., Prostate 51, 247 (2002).

    Article  Google Scholar 

  56. C. Méplan, S. Rohrmann, A. Steinbrecher, et al., PloS ONE 7, e48709 (2012).

    Article  ADS  Google Scholar 

  57. J. K. Christman, Oncogene 21, 5483 (2002).

    Article  Google Scholar 

  58. A. Roveri, A. Casasco, M. Maiorino, et al., J. Biol. Chem. 267, 6142 (1992).

    Google Scholar 

  59. R. Brigelius-Flohe, Free Radic. Biol. Med. 27, 951 (1999).

    Article  Google Scholar 

  60. R. F. Burk and K. E. Hill, Bioassays 21, 231 (1999).

    Article  Google Scholar 

  61. R. F. Burk, K. E. Hill, R. Read, and T. Bellew, Am._J. Physiol. 261, 26 (1991).

    Google Scholar 

  62. G. E. Olson, V. P. Winfrey, S. K. Nagdas, et al., Biol. Reprod. 73, 201 (2005).

    Article  Google Scholar 

  63. M. Koga, H. Tanaka, K. Yomogida, et al., Biol. Reprod. 58, 261 (1998).

    Article  Google Scholar 

  64. E. C. Wallace and H. L. Calvin, Gamete Res. 4, 389 (1983).

    Article  Google Scholar 

  65. R. F. Burk, K. E. Hill, M. E. Boeglin, et al., Histochem. Cell Biol. 108, 11 (1997).

    Article  Google Scholar 

  66. O. Gonzalez-Moreno, N. Boque, M. Redrado, et al., Prostate 71, 824 (2011).

    Article  Google Scholar 

  67. G. E Olson, V. P. Winfrey, S. K. Nagdas, et al., J. Biol. Chem. 282, 12290 (2007).

    Article  Google Scholar 

  68. S. C. Tsai, C. C. Lu, C. S. Lin, and P. S. Wang, J. Cell Biochem. 90, 1276 (2003).

    Article  Google Scholar 

  69. K. Nishimura, K. Matsumiya, A. Tsujimura, et al., Arch. Androl. 47, 67 (2001).

    Article  Google Scholar 

  70. Y. Gao, H. C. Feng, K. Walder, et al., FEBS Lett. 563, 185 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Varlamova.

Additional information

Original Russian Text © E.G. Varlamova, 2016, published in Biofizika, 2016, Vol. 61, No. 4, pp. 686–691.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varlamova, E.G. The role of selenium and selenocysteine-containing proteins in the mammalian male reproductive system. BIOPHYSICS 61, 580–584 (2016). https://doi.org/10.1134/S0006350916040266

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350916040266

Keywords

Navigation