Skip to main content
Log in

The nonlinear effect of the composite influence of red and blue light on Escherichia coli viability

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

A nonlinear dependence of E. coli cell inhibition was found during the simultaneous irradiation by the blue and red spectral regions at a power density of 100 mW/cm2. This dependence can be explained by the cascade two-photon light absorption by DNA molecules with intermediate resonance at the cellular chromophores, which leads to excitation and subsequent DNA damage similar to the damage that is caused by exposure to UV quanta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Vasilenko, V. P. Chebotarev, and Yu. V. Troitskii, Zh. Eksp. Teor. Fiz. 48, 777 (1965).

    Google Scholar 

  2. B. M. Savin, R. I. Kovach, and E. E. Kolchin, Dokl. Akad. Nauk SSSR: Fiziol. 221, 255 (1975).

    Google Scholar 

  3. D. H. Sliney, R. T. Wangemann, and J. K. Franks. J. Opt. Soc. Am. 66, 339 (1976).

    Article  ADS  Google Scholar 

  4. V. G. Dmitriev, V. N. Emelyanov, M. A. Kashintsev, et al., Kvant. Elektron 6, 803 (1979).

    Google Scholar 

  5. V. E. Prokop’ev, Biofizika 25, 305 (1980).

    Google Scholar 

  6. G. Palczewska, F. Vinberg, P. Stremplewski, et al., Proc. Natl. Acad. Sci. U. S. A 111, E5445 (2014).

    Article  ADS  Google Scholar 

  7. E. Chamorro, C. Bonnin-Arias, M. J. Perez-Carrasco, et al., Photochem. Photobiol 89, 468 (2013).

    Article  Google Scholar 

  8. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965; Mir, Moscow, 1966).

    MATH  Google Scholar 

  9. B. Ya. Zel’dovich, N. F. Pilipetskii, A. V. Sukhov, and N. V. Tabiruan, Pis’ma ZhETF 31, 287 (1980).

    ADS  Google Scholar 

  10. W. Heitler, The Quantum Theory of Radiation (Courier Corp., 1956; Izd. Inostrannoi Literatury, Moscow, 1956).

    MATH  Google Scholar 

  11. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).

    Book  Google Scholar 

  12. D. Voet, W. B. Gratzer, R. A. Cox, and P. Doty, Biopolymers 1, 193 (1963).

    Article  Google Scholar 

  13. V. G. Petukhov, V. A. Shuvalov, and I. A. Shuvalova, Biofizika 15 (3), 438 (1970).

    Google Scholar 

  14. Li Sun, E. R. Kantorowitz, and W. C. Galley, Eur. J. Biochem. 245, 32 (1997).

    Article  Google Scholar 

  15. Yu. A. Vladimirov and A. Ya. Potapenko, Physicochemical Bases of Photobiological Processes (Vysshaya Shkola, Moscow, 1989) [in Russian].

    Google Scholar 

  16. S. Horie and M. Morrison, J. Biol. Chem. 238 (8), 2859 (1963).

    Google Scholar 

  17. T. Omura and R. Sato, J. Biol. Chem. 239 (7), 2379 (1964).

    Google Scholar 

  18. R. Y. Stanier, E. A. Adelberg, and J. L. Ingram, The Microbial World, 4th ed. (Englewood Cliffs, N.J., Prentice Hall, 1976; Mir, Moscow, 1989), Vol. 2.

    Google Scholar 

  19. G. H. Weenk, Int. J. Food Microbiol. 17, 159 (1992).

    Article  Google Scholar 

  20. P. E. M. Gibbs, A. Borden, and C. W. Lawrence, Nucleic Acids Res. 23, 1919 (1995).

    Article  Google Scholar 

  21. S. Khan and R. M. Macnab, J. Mol. Biol. 138, 563 (1980).

    Article  Google Scholar 

  22. S. Wright, B. Walia, J. S. Parkinson, and S. Khan, J. Bacteriol. 188 (11), 3962 (2006).

    Article  Google Scholar 

  23. T. I. Karu, G. S. Kalendo, V. S. Letokhov, and V. V. Lobko, Il Nuovo Cimento D 3, 309 (1984).

    Article  ADS  Google Scholar 

  24. T. Karu, N. Smolyaninova, and A. Zelenin, Lasers in the Life Sciences 4, 167 (1991).

    Google Scholar 

  25. P. A. Lukyanovich, B. A. Zon, A. A. Kunin, and S. N. Pankova, Laser Phys. 25, 045602 (2015).

    Article  ADS  Google Scholar 

  26. R. J. Lanzafame, I. Stadler, A. F. Kurtz, et al., Lasers in Surgery and Medicine 39, 534 (2007).

    Article  Google Scholar 

  27. N. Vermeulen, W. J. Keeler, K. Nandakumar, and K. T. Leung, Biotechnol. Bioeng. 99, 550 (2008).

    Article  Google Scholar 

  28. C. S. Downes, A. R. S. Collins, and R. T. Johnson, Biophys. J. 25, 129 (1979).

    Article  Google Scholar 

  29. R. M. Goody and Y. L. Yung, Atmospheric Radiation (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  30. P. A. Lukyanovich, B. A. Zon, M. Y. Grabovich, et al., Laser Phys. Lett 13, 015602 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Lukyanovich.

Additional information

Original Russian Text © P.A. Lukyanovich, B.A. Zon, M.Yu. Grabovich, E.V. Shchelukhina, Yu.I. Danilova, M.V. Orlova, Yu.O. Sapeltseva, D.I. Sinugina, 2016, published in Biofizika, 2016, Vol. 61, No. 2, pp. 310–315.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanovich, P.A., Zon, B.A., Grabovich, M.Y. et al. The nonlinear effect of the composite influence of red and blue light on Escherichia coli viability. BIOPHYSICS 61, 262–266 (2016). https://doi.org/10.1134/S000635091602007X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000635091602007X

Keywords

Navigation