Skip to main content
Log in

Automatic detection of exudates in retinal images based on threshold moving average models

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Since exudates diagnostic procedures require the attention of an expert ophthalmologist, as well as regular monitoring of the disease and the workload of expert ophthalmologists will eventually exceed the current screening capabilities. Retinal imaging technology is a current practice screening capability provide a great potential solution. In this paper, a fast and robust automatic detection of exudates based on moving average histogram models of the fuzzy image, and then derives the better histogram. After segmentation of candidate exudates, the true exudates were prune based on Sobel edge detector and automatic Otsu’s thresholding algorithm is presented that results in the accurate location of the exudates in digital retinal images. To compare the performance of exudates detection methods we have constructed a large database of digital retinal images. The method was trained on a set of 200 retinal images, and tested on a completely independent set of 1 220 retinal images. Results show that the exudates detection method performs overall best sensitivity, specificity, and accuracy are 90.42, 94.60, and 93.69%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Ward, S. Tomlinson, and C. Taylor, Ophthalmology 95, 80 (1989).

    Article  Google Scholar 

  2. X. Zhang and O. Chutatape, in Proc. IEEE Comput. Soc. Conf. on Computer Vision and Pattern Recognition (2005), p. 422.

    Google Scholar 

  3. M. H. Goldbaum, N. P. Katz, M. R. Nelson, and L. R. Haff, Invest. Opthalmol. Vis. Sci. 31 (4), 617 (1989).

    Google Scholar 

  4. J. Goh, L. Tang, G. Saleh, L.A. Turk, and A. Browne, in Proc. 9th Int. Conf. on Info Action Technology and Application in Biomedicine (2009), p. 1.

    Google Scholar 

  5. M. Niemeijer, G. B. Van, S. R. Russell, and M. S. Abramoff, Invest. Opthalmol. Vis. Sci. 48 (5), 2260 (2007).

    Article  Google Scholar 

  6. L. Xu and S. Luo, in Proc. IEEE Youth Conf. on Information, Computing and Telecommunication (2009), p. 138.

    Google Scholar 

  7. N. Silberman, K. Ahrlich, R. Fergus, and L. Subramanian, in Proc. AAAI Spring Symposium Series (2010), p. 1.

    Google Scholar 

  8. W. Hsu, P. M. D. S. Pallawala, M. L. Lee, and K. G. A. Eong, in Proc. IEEE Comp. Soc. Conf. on Computer Vision and Pattern Recognition (2001), p. 246.

    Google Scholar 

  9. A. Osareh, M. Mirmehdi, B. Thomas, and R. Markham, in Proc. Medical Image Understanding and Analysis Conf. (2001), p. 49.

    Google Scholar 

  10. G. Luo, O. Chutatape, H. Lei, and S. M. Krishnan, in Proc. IEEE Symp. on Computer-Based Medical Systems (2001), p. 132.

    Google Scholar 

  11. H. Li and O. Chutatape, IEEE Trans. Biomed. Eng. 51 (2), 246 (2004).

    Article  Google Scholar 

  12. T. Walter, J. C. Klein, P. Massin, and A. Erginay, IEEE Trans. Med. Imaging 21 (10), 1236 (2002).

    Article  Google Scholar 

  13. K. Noranha, J. Nayak, and S. Bhat, in Proc. IEEE Region 10 Conf. (2006), p. 1.

    Google Scholar 

  14. C. Sinthanayothin, J. F. Boyce, T. H. Williamson, H. L. Cook, E. Mensah, S. Lai, and D. Usher, Diabet. Med. 19 (2), 105 (2002).

    Article  Google Scholar 

  15. A. Osareh, M. Mirmehdi, B. Thomas, and R. Markham, in Proc. 7th Eur. Conf. on Computer Vision (2002), p. 502.

    Google Scholar 

  16. C. Sinthanayothin, Ph.D. dissertation, King’s College of London, London, U.K., 1999.

    Google Scholar 

  17. K. Wisaeng, N. Hiransakolwong, and E. Pothiruk, Appl. Math. Sci. 6 (103), 5127 (2012).

    Google Scholar 

  18. T. Kauppi, V. Kalesnykiene, J. K. Kamarainen, L. Lensu, I. Sorri, A. Raninen, R. Voutilainen, H. Uusitalo, H. Kalviainen, and J. Pietila, The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol (2007).

    Book  Google Scholar 

  19. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. (Prentice Hall, 2002).

    Google Scholar 

  20. M. Petrou and C. Petrou, Image Processing: The Fundamentals, 2nd ed. (Wiley, 2010. lSBN: 978-0-47074586-1.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kittipol Wisaeng.

Additional information

The article is published in the original.

Published in Russian in Biofizika, 2015, Vol. 60, No. 2, pp. 360–370.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wisaeng, K., Hiransakolwong, N. & Pothiruk, E. Automatic detection of exudates in retinal images based on threshold moving average models. BIOPHYSICS 60, 288–297 (2015). https://doi.org/10.1134/S0006350915020220

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350915020220

Keywords

Navigation