Skip to main content
Log in

Physicochemistry of dinitrosyl iron complexes with thiolate ligands underlying their beneficial effect in endometriosis

  • Complex Systems Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

Exogenous dinitrosyl iron complexes (DNIC) with thiolate ligands as NO and NO+ donors are capable of exerting both regulatory and cytotoxic effects on diverse biological processes similarly to those characteristic of endogenous nitric oxide. Regulatory activity of DNIC (vasodilatory, hypotensive, suppressing thrombosis, increasing erythrocyte elasticity, accelerating skin wound healing, inducing penile erection, etc.) is determined by their capacity of NO and NO+ transfer to biological targets of the latter (heme- and thiol-containing proteins, respectively) due to higher affinity of the proteins for NO and NO+ than that of DNIC. Cytotoxic activity of DNIC is provided by rapid DNIC decomposition under action of iron-chelating compounds, resulting in appearance of NO and NO+ in cells and tissues in high amounts. The latter mechanism is suggested to cause the blocking effect of DNIC as cytotoxic effectors on the development of benign endometrial tumors in rats with experimental endometriosis. It is also proposed that a similar mechanism can operate to cause at least a delay of malignant tumor proliferation under action of DNIC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Ignarro, Nitric Oxide: Biology and Pharmacology (Acad. Press, San Diego, 2000).

    Google Scholar 

  2. B. Eskenazi and M. L. Warner, Obstet. Gynecol. Clin. North Am. 24, 235 (1997).

    Article  Google Scholar 

  3. A. van Langendonct, J. Donnez, S. Defrere, et al., Mol. Hum. Reprod. 14, 259 (2008).

    Article  Google Scholar 

  4. T. A. Mahmood and A. Templeton, Hum Reprod. 6, 235 (2012).

    Google Scholar 

  5. P. Vecellini, P. G. Crosignani, A. Abiat, et al., Hum. Reprod. Update 15, 177 (2009).

    Article  Google Scholar 

  6. B. Yilmaz, A. Susak, S. Kilik, et al., Am. J. Obstet Gynecol. 202, 368e1 (2010).

    Google Scholar 

  7. A. Asante and R. N. Taylor, Ann. Rev. Physiology 73, 163 (2011).

    Article  Google Scholar 

  8. M. W. Langer and M. D. Menger, Hum Reprod. Update 18, 682 (2012).

    Article  Google Scholar 

  9. J. Mier-Carbrera, S. Gonsalez-Gallardo, and C. Hernandez-Guerrero, Reprod. Sci. 20, 1332 (2013).

    Article  Google Scholar 

  10. Z. Aplay, G. M. Saed, M. P. Diamond, et al., Reprod. Sci. 13, 390 (2006).

    Google Scholar 

  11. M. Y. Wu, K. P. Chao, J. H. Jang, et al., Hum. Reprod. 18, 2668 (2003).

    Article  Google Scholar 

  12. B. H. Osborn, A. F. Haney, M. A. Misukoniset, et al., Fertil. Steril. 79, 46 (200).

  13. Q. Luo, L. J. Long, and H. F. Huang, Zhejiang Da Xue Xue Ban 36, 424 (2007).

    Google Scholar 

  14. E. N. Burgova, L. V. Adamyan, N. A. Tkachev, et al., Biophysics 57, 87 (2012).

    Article  Google Scholar 

  15. L. V. Adamyan, E. N. Burgova, N. A. Tkachev, et al., Biophysics 58, 222 (2013).

    Article  Google Scholar 

  16. E. N. Burgova, N. A. Tkachev, L. V. Adamyan, et al., Eur. J. Pharmacol. 727, 140 (2014).

    Article  Google Scholar 

  17. A. F. Vanin, A. P. Poltorakov, V. D. Mikoyan, et al., Nitric Oxide Biol. Chem. 23, 123 (2010).

    Google Scholar 

  18. A. F. Vanin, Nitric Oxide Biol. Chem. 21, 1 (2009).

    Article  Google Scholar 

  19. A. F. Vanin and R. M. Nalbandyan, Biofizika 11, 167 (1965).

    Google Scholar 

  20. A. F. Vanin, L. A. Blumenfeld, and A. G. Chetverikov, Biofizika 12, 829 (1967).

    Google Scholar 

  21. C. C. McDonald, W. D. Philips, and H. F. Mower, J. Am. Chem. Soc. 196, 1303 (1965).

    Google Scholar 

  22. A. F. Vanin, Biokhimiya 32, 228 (1967).

    Google Scholar 

  23. A. F. Vanin, V. A. Serezhenkov, V. D. Mikoyan, et al., Nitric Oxide Biol. Chem. 2, 224 (1998).

    Article  Google Scholar 

  24. A. F. Vanin, S. V. Kiladze, and L. N. Kubrina, Biofizika 23, 474 (1978).

    Google Scholar 

  25. N. N. Tarasova, O. A. Kovalenko, and A. F. Vanin, Biofizika 26, 678 (1981).

    Google Scholar 

  26. A. F. Vanin and V. T. Varich, Studia Biophysica 86, 177 (1981).

    Google Scholar 

  27. A. F. Vanin, I. V. Malenkova, and V. A. Serezhenkov, Nitric Oxide Biol. Chem. 1, 191 (1997).

    Article  Google Scholar 

  28. A. F. Vanin, A. A. Papina, V. A. Serezhenkov, and W. H. Koppenol, Nitric Oxide Biol. Chem. 10, 60 (2004).

    Article  Google Scholar 

  29. S. Stojanovic, D. Stanic, M. Nikolic, et al., Nitric Oxide Biol. Chem. 11, 256 (2004).

    Article  Google Scholar 

  30. B. D’. Autreaux, O. Horner, J-L. Oddou, et al., J. Am. Chem. Soc. 126, 6005 (2004).

    Article  Google Scholar 

  31. A. F. Vanin and D. S. Burbaev, J. Biophys. 2011, Article ID 878236, 14 (2011).

    Google Scholar 

  32. R. R. Borodulin, L. N. Kubrina, V. D. Mikoyan, et al., Nitric Oxide Biol. Chem. 29, 4 (2013).

    Article  Google Scholar 

  33. N. Ya. Giliano, L. V. Konevega, L. A. Noskin, et al., Nitric Oxide Biol. Chem. 24, 151 (2011).

    Article  Google Scholar 

  34. C. Czabo, H. Ischiropoulos, and R. Radi, Nat. Rev. 6, 662 (2007).

    Google Scholar 

  35. A. L. Kleschyov, S. Strand, S. Schmitt, et al., Free Rad. Biol. Med. 40, 340 (2006).

    Article  Google Scholar 

  36. E. I. Chazov, O. V. Rodnenkov, A. V. Zorin, et al., Nitric Oxide Biol. Chem. 26, 148 (2012).

    Article  Google Scholar 

  37. M. Fontecave, Cell. Mol. Life Sci. 54, 684 (1998).

    Article  Google Scholar 

  38. T. Yonetany, RIKEN Review, 24, 51 (1999).

    Google Scholar 

  39. A. F. Vanin, L. A. Ostrovskaya, D. B. Korman, et al., Biophysics 59, 415 (2014).

    Article  Google Scholar 

  40. J. Green, M. D. Rolfe, and L. J. Smith, Virulence 5, 1 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Vanin.

Additional information

Original Russian Text © A.F. Vanin, L.V. Adamyan, E.N. Burgova, N.A. Tkachev, 2014, published in Biofizika, 2014, Vol. 59, No. 4, pp. 766–775.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanin, A.F., Adamyan, L.V., Burgova, E.N. et al. Physicochemistry of dinitrosyl iron complexes with thiolate ligands underlying their beneficial effect in endometriosis. BIOPHYSICS 59, 628–634 (2014). https://doi.org/10.1134/S0006350914040253

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914040253

Keywords

Navigation