Skip to main content
Log in

Effect of dilute solutions of biologically active substances on cell membranes

  • Cell Biophysics
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The article presents data on changes in physicochemical properties of different biological membranes (plasmatic, microsomal, synaptosomes) under the action of biologically active substances, which are different in their chemical structure and the mechanism of action (natural and synthetic antioxidants, thyrotropin - releasing hormone, phorbol esters), in the wide range of concentrations (10−22−10−3 M). Dose dependences of the effect of biologically active substances on the activity of membrane-bound enzymes, lipid peroxidation, the structural state of the various regions of the lipid bilayer of membranes have been obtained and analyzed in terms of their formal generality of polymodality, number and position of the maxima, a sign change of the effect. An attempt to explain the mechanism of each of the observed peaks in these curves has been made. The maximum in the range of relatively high “physiological” concentrations (10−3–10−7 M) is associated with introduction of biologically active substances into biomembranes. In this study maxima in the range of ultra-low doses (10−11–10−16 M) and “apparent” concentrations (10−18 M), where the presence of biologically active substance molecule in a reaction volume is probabilistic in nature, are explained by physicochemical properties of diluted biologically active substances solutions. This conclusion is based on our data on the changes in IR spectra of aqueous solutions of biologically active substances and the results obtained by academician A.I. Konovalov et al. concerning the physicochemical properties of dilute solutions of biologically active substances (conductivity, surface tension, charge), due to the formation of so-called “nanoassociates” from biologically active substance molecule and numerous number of water molecules. The nanoassociates formation and biological effect disappear if the low concentration solutions are kept in a special shielded permalloy container protecting its contents from external electromagnetic field. Thus, nanoassociates are the material carriers of the unique ability of the ultra-low doses of biologically active substances to exhibit biological effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. B. Burlakova, Vestn. RAN 64(5), 425 (1994).

    Google Scholar 

  2. E. B. Burlakova, A. A. Konradov, and E. L. Maltseva, Biophysics 49, 522 (2004.)

    Google Scholar 

  3. I. P. Ashmarin, E. P. Karazeeva, and T. V. Lelekova, Ros. Khim. Zh. 18(5), 21 (1999).

    Google Scholar 

  4. S. V. Zaitsev, A. M. Efanov, and L. A. Sazanov, Ros. Khim. Zh. 18(5), 28 (1999).

    Google Scholar 

  5. V. P. Yamskova and I. A. Yamskov, Ros. Khim. Zh. 43(2), 74 (1999).

    Google Scholar 

  6. F. X. Eizayaga, O. Aguejouf, V. Desplat, and C. Doutremepuich, Thrombosis 2012, 430 (2012).

    Article  Google Scholar 

  7. B. Bonavida, Ros. Khim. Zh. 18(5), 100 (1999).

    Google Scholar 

  8. L. A. Blumenfeld, Ros. Khim. Zh. 18(5), 15 (1999).

    Google Scholar 

  9. G. T. Rikhireva, I. íN. Golubev, I. A. Prudchenko, and I. I. Mikhaleva, Biol. Membrany 20, 409 (2003).

    Google Scholar 

  10. A. S. Polezina, K. A. Anikienko, and V. K. Kurochkin, Ros. Khim. Zh. 18(5), 72 (1999).

    Google Scholar 

  11. N. P. Pal’mina, L. V. Kledova, T. V. Pankova, et al., Vopr. Biokhim. Med. Farm. Khimii 4, 31 (2004).

    Google Scholar 

  12. Y. Nishizuka, Science 258, 608 (1992).

    Article  ADS  Google Scholar 

  13. T. Yoshimasa, D. R. Sibley, M. Bouvier, et al., Nature 327, 67 (1987).

    Article  ADS  Google Scholar 

  14. C. W. Taylor and J. E. Merritt, Trends Pharm. Sci. 7, 238 (1986).

    Article  Google Scholar 

  15. Ye. B. Burlakova, Ye. M. Molochkina, and N. P. Pal’mina, in: Advances in Enzyme Regulation, Ed. by J. Weber (Pergamon Press, New York, 1980), cc. 163–179.

  16. Yu. A. Vladimirov and A. I. Archakov, Lipid Peroxidation in Biological Membranes (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  17. M. Bouvier, Ann. NY Acad. Sci. 594, 120 (1990).

    Article  ADS  Google Scholar 

  18. N. P. Pal’mina, E. L. Mal’tseva, and E. B. Burlakova, Khim. Fizika 14(11), 47 (1995).

    Google Scholar 

  19. E. L. Mal’tseva, N. P. Pal’mina, and E. B. Burlakova, Biol. Membrany 15(2), 199 (1998).

    Google Scholar 

  20. V. V. Belov, E. L. Mal’tseva, and N. P. Pal’mina, Biofizika 52, 75 (2007) [no English version].

    Google Scholar 

  21. V. E. Zhernovkov, N. G. Bogdanova, and N. P. Pal’mina, Biol. Membrany 22, 88 (2005).

    Google Scholar 

  22. N. P. Pal’mina, E. L. Mal’tseva, N. V. Kurnakova, and E. B. Burlakova, Biokhimiya 59, 193 (1994).

    Google Scholar 

  23. M. Guichardan and M. Lagarde, Eur. J. Lipid Sci. Technology 111, 75 (2009).

    Article  Google Scholar 

  24. S. D. Razumovskii and G. E. Zaikov, Ozone and Its Reactions with Organic Compounds (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  25. A. N. Kuznetsov, Method of Spin Probe (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  26. Spin Label Method: Theory and Application, Ed. by L. Berliner (Mir, Moscow, 1979) [in Russian].

    Google Scholar 

  27. E. L. Mal’tseva, N. V. Kurnakova, and N. P. Pal’mina, Biol. Membrany 9(10-11), 1028 (1992).

    Google Scholar 

  28. E. M. Molochkina, I. B. Ozerova, and E. B. Burlakova, Ros. Khim. Zh. 18(5), 63 (1999).

    Google Scholar 

  29. L. G. Nagler, S. M. Gurevich, and A. I. Kozachenko, in Proc. IV Internat. Symp. “Mechanisms of Action of Ultrasmall Doses” (Moscow, 2008), pp. 77–78.

    Google Scholar 

  30. Yu. A. Treshchenkova, A. N. Goloshchapov, and E. B. Burlakova, Radiats. Biol. Radioekol. 43(3) 320 (2003).

    Google Scholar 

  31. M. G. Sergeeva, M. V. Gonchar, D. A. Nagmaladze, et al., Biokhimiya 62(3), 269 (1997).

    Google Scholar 

  32. V. E. Kagan, Lipid Peroxidation in Biomembranes (CRC Press, Boca Raton, FL, 1988).

    Google Scholar 

  33. B. Halliwell and J. M. C. Gutteridge, Free Radicals in Biology and M edicine (Clarendon Press, Oxford, 1985).

    Google Scholar 

  34. E. I. Pynzar’, N. G. Bogdanova, and N. P. Palmina, Biol. Membrany 12(3), 279 (1995).

    Google Scholar 

  35. N. P. Palmina, E. I. Pynzar’, and N. V. Kurnakova, Biol. Membrany 14(4), 376 (1997).

    Google Scholar 

  36. P. Gennis, Biomembranes. Molecular Structure and Function (Mir, Moscow, 1997) [in Russian].

    Google Scholar 

  37. V. V. Belov, E. L. Mal’tseva, and N. P. Palmina, Biophysics 56, 323 (2011).

    Article  Google Scholar 

  38. N. P. Palmina, N. G. Bogdanova, E. L. Mal’tseva, and E. I. Pynzar’, Biol. Membrany 9(8), 810 (1992).

    Google Scholar 

  39. V. E. Zhernovkov, N. G. Bogdanova, T. V. Lelekova, and N. P. Palmina, Radiats. Biol. Radioekol. 43(3), 331 (2003).

    Google Scholar 

  40. V. E. Zhernovkov, N. G. Bogdanova, and N. P. Palmina, Biol. Membrany 22(50), 388 (2005).

    Google Scholar 

  41. V. E. Zhernovkov, and N. P. Palmina, Byul. Eksperim. Biol. Med. 144(8), 151 (2007).

    Google Scholar 

  42. E. L. Maltseva, N. P. Palmina, and J. F. Pryme, J. Cellular Biochem. 46(3), 260 (1991).

    Article  Google Scholar 

  43. E. L. Maltseva, N. P. Palmina, and J. F. Pryme, Mol. Cell. Biochem. 106(1) 49 (1991).

    Article  Google Scholar 

  44. E. L. Mal’tseva and N. P. Palmina, Radiats. Biol. Radioekol. 23(3), 301 (2003).

    Google Scholar 

  45. T. E. Chasovskaya, E. L. Mal’tseva, and N. P. Palmina, Biophysics 58, 78 (2013).

    Article  Google Scholar 

  46. N. P. Palmina, T. E. Chasovskaya, V. V. Belov, and E. L. Mal’tseva, Dokl. RAN 443(4), 511 (2012).

    Google Scholar 

  47. E. M. Molochkina, O. M. Zorina, L. D. Fatkullina, et al., Chem. Biol. Interact. 401(15), 157–158:401 (2005).

    Google Scholar 

  48. J. C. Gomez-Fernandes, J. Villalain, F. J. Aranda, et al., Annal. NY Acad. Sci. 570, 109 (1989).

    Article  ADS  Google Scholar 

  49. S. R. Wassall, R. C. McCabe, W. D. Ehringer, and W. Stilwell, Chem. Phys. Lipids 60, 29 (1991).

    Article  Google Scholar 

  50. L. J. Pike, J. Lipid Research 44, 65 (2003).

    Article  MathSciNet  Google Scholar 

  51. M. C. Gershengorn and R. Osman, Physiol. Reviews 76, 175 (1996).

    Google Scholar 

  52. J. Cao, D. O’Donnell, H. Vu, et al., J. Biol. Chem. 273, 32281 (1998).

    Article  Google Scholar 

  53. V. V. Belov, E. L. Mal’tseva, N. P. Palmina, and E. B. Burlakova, Dokl. RAN 399(4), 1 (2004).

    Google Scholar 

  54. R. P. Saykally and G. A. Blake, Science 259, 1570 (1993).

    Article  ADS  Google Scholar 

  55. K. Liu, M. G. Brown, J. D. Cruzan, and R. P. Saykally, Science 271, 62 (1996).

    Article  ADS  Google Scholar 

  56. E. E. Fesenko, Biophysics 47, 365 (2002).

    Google Scholar 

  57. E. E. Fesenko, Biophysics 44, 1 (1999).

    Google Scholar 

  58. G. M. Zubareva, A. V. Kargapolov, and L. S. Yaguzhinskii, Dokl. RAN 388(4), 549 (2003).

    Google Scholar 

  59. G. M. Zubareva, A. V. Kargapolov, and L. S. Yaguzhinskii, Biophysics 48, 185 (2003).

    Google Scholar 

  60. V. V. Belov, I. A. Belyaeva, G. P. Shmatov, et al., Dokl. RAN 439(1), 68 (2011).

    Google Scholar 

  61. V. E. Zhernovkov, I. A. Roshchina, G. M. Zubareva, et al., Water 2, 58 (2010).

    Google Scholar 

  62. E. I. Grigor’ev, V. Kh. Khavinson, and V. V. Malinin, Byul. Eksperim. Biol. Med. 136(8), 173 (2003).

    Google Scholar 

  63. G. Haken, Synergetics ((Mir, Moscow, 1980) [in Russian].

    MATH  Google Scholar 

  64. I. Prigogine and I. Stengers, Order from Chaos. New Dialogue of Man with Nature (Editorial URSS, Moscow, 2001) [in Russian].

    Google Scholar 

  65. A. M. Zhabotinsky, Biofizika 9, 306 (1964).

    Google Scholar 

  66. L. A. Blumenfeld, Solvable and Unsolvable Problems of Biological Physics (Editorial URSS, Moscow, 2002) [in Russian].

    Google Scholar 

  67. T. E. Chasovskaya, I. G. Plashchina, and N. P. Palmina, Dokl. RAN 449(6), 673 (2013).

    Google Scholar 

  68. N. P. Palmina, V. V. Belov, T. E. Chasovskaya, and E. L. Mal’tseva, in Oxidation, Oxidative Stress, Antioxidants (RUDN, Moscow, 2013), pp. 3–27 [in Russian].

    Google Scholar 

  69. V. Micol, P. Sánchez-Pinera, J. Villalaín, et al., Biophys. J. 76, 916 (1999).

    Article  Google Scholar 

  70. M. F. Konstantinova, T. P. Nekrasova, and B. Kh. Nisman, Tsitologiya 33, 54 (1991).

    Google Scholar 

  71. F. R. Chernikov, Radiats. Biol. Radioekol. 43(3), 367 (2003).

    MathSciNet  Google Scholar 

  72. G. A. Domrachev, D. A. Selivanovskii, I. N. Didenkulov, et al., Zh. Fiz. Khimii 75(2), 363 (2001).

    Google Scholar 

  73. V. L. Voeikov, Ros. Khim. Zh. 8(6), 41 (2009).

    Google Scholar 

  74. V. L. Voeikov, N. D. Vilenskaya, Kha Do Min, et al., Zh. Fiz. Khimii 86(9), 1518 (2012).

    Google Scholar 

  75. V. I. Lobyshev, M. S. Tomkevich, and I. Yu. Petrushanko, Biophysics 50(3), 416 (2005).

    Google Scholar 

  76. V. I. Lobyshev, A. B. Solovei, and N. A. Bulienkov, Biophysics 48(6), 932 (2003).

    Google Scholar 

  77. G. H. Pollack, Japan. J. Physiology 51(6), 649 (2001).

    Article  Google Scholar 

  78. J. M. Zheng, A. Wexler, and G. H. Pollack, Colloid Interface Sci. 332, 511 (2009).

    Article  Google Scholar 

  79. I. S. Ryzhkina, L. I. Murtazina, Yu. V. Kiseleva, and A. I. Konovalov, Dokl. RAN 428(4), 487 (2009).

    Google Scholar 

  80. I. S. Ryzhkina, Yu. V. Kiseleva, S. E. Solov’eva, et al., Izv. RAN Ser. Khim. 12, 2424 (2009).

    Google Scholar 

  81. I. S. Ryzhkina, Yu. V. Kiseleva, G. A. Zheltukhina, et al., Dokl. RAN 440(1), 59 (2011).

    Google Scholar 

  82. I. S. Ryzhkina, Yu. V. Kiseleva, L. I. Murtazina, et al., Dokl. RAN 438(5), 635 (2011).

    Google Scholar 

  83. N. P. Palmina, T. E. Chasovskaya, I. S. Ryzhkina, et al., Dokl. RAN 429(1), 128 (2009).

    Google Scholar 

  84. L. Montagnier, J. Aïssa, S. Ferris, et al., Interdiscip Sci. 1(2), 81 (2009).

    Article  Google Scholar 

  85. I. S. Ryzhkina, L. I. Murtazina, E. M. Masagutova, et al., Dokl. RAN 446(6), 646 (2012).

    Google Scholar 

  86. I. S. Ryzhkina, Yu. V. Kiseleva, A. P. Timosheva, et al., Dokl. RAN 447(1), 56 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Palmina.

Additional information

Original Russian Text © N.P. Palmina, E.L. Maltseva, T.E. Chasovskaya, 2014, published in Biofizika, 2014, Vol. 59, No. 4, pp. 704–716.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palmina, N.P., Maltseva, E.L. & Chasovskaya, T.E. Effect of dilute solutions of biologically active substances on cell membranes. BIOPHYSICS 59, 577–587 (2014). https://doi.org/10.1134/S0006350914040228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350914040228

Keywords

Navigation