Skip to main content
Log in

Ion Channels in Electrical Signaling in Higher Plants

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Electrical signals (ESs) appearing in plants under the action of various external factors play an important role in adaptation to changing environmental conditions. Generation of ES in higher plant cells is associated with activation of Ca2+, K+, and anion fluxes, as well as with changes in the activity of plasma membrane H+-ATPase. In the present review, molecular nature of the ion channels contributing to ESs transmission in higher plants is analyzed based on comparison of the data from molecular-genetic and electrophysiological studies. Based on such characteristics of ion channels as selectivity, activation mechanism, and intracellular and tissue localization, those ion channels that meet the requirements for potential participation in ES generation were selected from a wide variety of ion channels in higher plants. Analysis of the data of experimental studies performed on mutants with suppressed or enhanced expression of a certain channel gene revealed those channels whose activation contributes to ESs formation. The channels responsible for Ca2+ flux during generation of ESs include channels of the GLR family, for K+ flux – GORK, for anions – MSL. Consideration of the prospects of further studies suggests the need to combine electrophysiological and genetic approaches along with analysis of ion concentrations in intact plants within a single study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

AP:

action potential

ES:

electrical signal

SP:

system potential

VP:

variation potential

References

  1. Huber, A. E., and Bauerle, T. L. (2016) Long-distance plant signaling pathways in response to multiple stressors: the gap in knowledge, J. Exp. Bot., 67, 2063-2079, https://doi.org/10.1093/jxb/erw099.

    Article  CAS  PubMed  Google Scholar 

  2. Johns, S., Hagihara, T., Toyota, M., and Gilroy, S. (2021) The fast and the furious: rapid long-range signaling in plants, Plant Physiol., 185, 694-706, https://doi.org/10.1093/plphys/kiaa098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mudrilov, M., Ladeynova, M., Grinberg, M., Balalaeva, I., and Vodeneev, V. (2021) Electrical signaling of plants under abiotic stressors: transmission of stimulus-specific information, Int. J. Mol. Sci., 22, 10715, https://doi.org/10.3390/ijms221910715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ladeynova, M., Kuznetsova, D., Mudrilov, M., and Vodeneev, V. (2023) Integration of electrical signals and phytohormones in the control of systemic response, Int. J. Mol. Sci., 24, 847, https://doi.org/10.3390/ijms24010847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sukhov, V., Sukhova, E., and Vodeneev, V. (2019) Long-distance electrical signals as a link between the local action of stressors and the systemic physiological responses in higher plants, Prog. Biophys. Mol. Biol., 146, 63-84, https://doi.org/10.1016/j.pbiomolbio.2018.11.009.

    Article  CAS  PubMed  Google Scholar 

  6. Klejchova, M., Silva-Alvim, F. A. L., Blatt, M. R., and Alvim, J. C. (2021) Membrane voltage as a dynamic platform for spatiotemporal signaling, physiological, and developmental regulation, Plant Physiol., 185, 1523-1541, https://doi.org/10.1093/plphys/kiab032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farmer, E. E., Gao, Y., Lenzoni, G., Wolfender, J., and Wu, Q. (2020) Wound- and mechanostimulated electrical signals control hormone responses, New Phytol., 227, 1037-1050, https://doi.org/10.1111/nph.16646.

    Article  CAS  PubMed  Google Scholar 

  8. Opritov, V. A., Pyatygin, S. S., and Retivin, V. G., Bioelectrogenesis in higher plants, Moscow: Nauka, 1991.

  9. Bulychev, A. A., and Komarova, A. V. (2014) Long-distance signal transmission and regulation of photosynthesis in characean cells, Biochemistry (Moscow), 79, 273-281, https://doi.org/10.1134/S0006297914030134.

    Article  CAS  PubMed  Google Scholar 

  10. Kisnieriene, V., Trębacz, K., Pupkis, V., Koselski, M., and Lapeikaite, I. (2022) Evolution of long-distance signalling upon plant terrestrialization: comparison of action potentials in Characean algae and liverworts, Ann. Bot., 130, 457-475, https://doi.org/10.1093/aob/mcac098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lunevsky, V. Z., Zherelova, O. M., Vostrikov, I. Y., and Berestovsky, G. N. (1983) Excitation of Characeae cell membranes as a result of activation of calcium and chloride channels, J. Membr. Biol., 72, 43-58, https://doi.org/10.1007/BF01870313.

    Article  Google Scholar 

  12. Vodeneev, V. A., Katicheva, L. A., and Sukhov, V. S. (2016) Electric signals in higher plants: mechanisms of generation and propagation, Biophysics, 61, 505-512, https://doi.org/10.1134/S0006350916030209.

    Article  CAS  Google Scholar 

  13. Fromm, J., and Lautner, S. (2007) Electrical signals and their physiological significance in plants: electrical signals in plants, Plant Cell Environ., 30, 249-257, https://doi.org/10.1111/j.1365-3040.2006.01614.x.

    Article  CAS  PubMed  Google Scholar 

  14. Hodick, D., and Sievers, A. (1988) The action potential of Dionaea muscipula Ellis, Planta, 174, 8-18, https://doi.org/10.1007/BF00394867.

    Article  CAS  PubMed  Google Scholar 

  15. Krol, E., Dziubinska, H., Stolarz, M., and Trebacz, K. (2006) Effects of ion channel inhibitors on cold- and electrically-induced action potentials in Dionaea muscipula, Biol. Plant., 50, 411-416, https://doi.org/10.1007/s10535-006-0058-5.

    Article  CAS  Google Scholar 

  16. Stahlberg, R., Cleland, R. E., and Van Volkenburgh, E. (2006) Slow wave potentials – a propagating electrical signal unique to higher plants, in Communication in Plants (Baluška, F., Mancuso, S., and Volkmann, D., eds) Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 291-308, https://doi.org/10.1007/978-3-540-28516-8_20.

  17. Li, Q., Wang, C., and Mou, Z. (2020) Perception of damaged self in plants, Plant Physiol., 182, 1545-1565, https://doi.org/10.1104/pp.19.01242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vodeneev, V., Mudrilov, M., Akinchits, E., Balalaeva, I., and Sukhov, V. (2018) Parameters of electrical signals and photosynthetic responses induced by them in pea seedlings depend on the nature of stimulus, Funct. Plant Biol., 45, 160, https://doi.org/10.1071/FP16342.

    Article  CAS  PubMed  Google Scholar 

  19. Mudrilov, M., Ladeynova, M., Berezina, E., Grinberg, M., Brilkina, A., Sukhov, V., and Vodeneev, V. (2021) Mechanisms of specific systemic response in wheat plants under different locally acting heat stimuli, J. Plant Physiol., 258-259, 153377, https://doi.org/10.1016/j.jplph.2021.153377.

    Article  CAS  PubMed  Google Scholar 

  20. Mousavi, S. A. R., Chauvin, A., Pascaud, F., Kellenberger, S., and Farmer, E. E. (2013) Glutamate receptor-like genes mediate leaf-to-leaf wound signalling, Nature, 500, 422-426, https://doi.org/10.1038/nature12478.

    Article  CAS  PubMed  Google Scholar 

  21. Salvador-Recatalà, V., Tjallingii, W. F., and Farmer, E. E. (2014) Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes, New Phytol., 203, 674-684, https://doi.org/10.1111/nph.12807.

    Article  CAS  PubMed  Google Scholar 

  22. Julien, J. L., Desbiez, M. O., De Jaegher, G., and Frachisse, J. M. (1991) Characteristics of the wave of depolarization induced by wounding in Bidens Pilosa L., J. Exp. Bot., 42, 131-137, https://doi.org/10.1093/jxb/42.1.131.

    Article  Google Scholar 

  23. Shao, Q., Gao, Q., Lhamo, D., Zhang, H., and Luan, S. (2020) Two glutamate- and pH-regulated Ca2+ channels are required for systemic wound signaling in Arabidopsis, Sci. Signal., 13, eaba1453, https://doi.org/10.1126/scisignal.aba1453.

    Article  CAS  PubMed  Google Scholar 

  24. Zimmermann, M. R., and Felle, H. H. (2009) Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities, Planta, 229, 539-547, https://doi.org/10.1007/s00425-008-0850-x.

    Article  CAS  PubMed  Google Scholar 

  25. Katicheva, L., Sukhov, V., Akinchits, E., and Vodeneev, V. (2014) Ionic nature of burn-induced variation potential in wheat leaves, Plant Cell Physiol., 55, 1511-1519, https://doi.org/10.1093/pcp/pcu082.

    Article  CAS  PubMed  Google Scholar 

  26. Vodeneev, V., Akinchits, E., and Sukhov, V. (2015) Variation potential in higher plants: Mechanisms of generation and propagation, Plant Signal. Behav., 10, e1057365, https://doi.org/10.1080/15592324.2015.1057365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stahlberg, R., and Cosgrove, D. J. (1997) The propagation of slow wave potentials in pea epicotyls, Plant Physiol., 113, 209-217, https://doi.org/10.1104/pp.113.1.209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller, G., Schlauch, K., Tam, R., Cortes, D., Torres, M. A., Shulaev, V., Dangl, J. L., and Mittler, R. (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli, Sci. Signal., 2, ra45, https://doi.org/10.1126/scisignal.2000448.

    Article  PubMed  Google Scholar 

  29. Devireddy, A. R., Zandalinas, S. I., Gómez-Cadenas, A., Blumwald, E., and Mittler, R. (2018) Coordinating the overall stomatal response of plants: rapid leaf-to-leaf communication during light stress, Sci. Signal., 11, eaam9514, https://doi.org/10.1126/scisignal.aam9514.

    Article  CAS  PubMed  Google Scholar 

  30. Volkov, R. A., Panchuk, I. I., Mullineaux, P. M., and Schöffl, F. (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis, Plant Mol. Biol., 61, 733-746, https://doi.org/10.1007/s11103-006-0045-4.

    Article  CAS  PubMed  Google Scholar 

  31. Kawarazaki, T., Kimura, S., Iizuka, A., Hanamata, S., Nibori, H., Michikawa, M., Imai, A., Abe, M., Kaya, H., and Kuchitsu, K. (2013) A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF, Biochim. Biophys. Acta, 1833, 2775-2780, https://doi.org/10.1016/j.bbamcr.2013.06.024.

    Article  CAS  PubMed  Google Scholar 

  32. Hedrich, R. (2012) Ion channels in plants, Physiol. Rev., 92, 1777-1811, https://doi.org/10.1152/physrev.00038.2011.

    Article  CAS  PubMed  Google Scholar 

  33. Costa, A., Navazio, L., and Szabo, I. (2018) The contribution of organelles to plant intracellular calcium signalling, J. Exp. Bot., 69, 4175-4193, https://doi.org/10.1093/jxb/ery185.

    Article  CAS  Google Scholar 

  34. Kollist, H., Jossier, M., Laanemets, K., and Thomine, S. (2011) Anion channels in plant cells: plant anion channels, FEBS J., 278, 4277-4292, https://doi.org/10.1111/j.1742-4658.2011.08370.x.

    Article  CAS  PubMed  Google Scholar 

  35. Véry, A.-A., and Sentenac, H. (2002) Cation channels in the Arabidopsis plasma membrane, Trends Plant Sci.Sci., 7, 168-175, https://doi.org/10.1016/S1360-1385(02)02262-8.

    Article  Google Scholar 

  36. Fromm, J., and Spanswick, R. (1993) Characteristics of action potentials in willow (Salix viminalis L.), J. Exp. Bot., 44, 1119-1125, https://doi.org/10.1093/jxb/44.7.1119.

    Article  Google Scholar 

  37. Iosip, A. L., Böhm, J., Scherzer, S., Al-Rasheid, K. A. S., Dreyer, I., Schultz, J., Becker, D., Kreuzer, I., and Hedrich, R. (2020) The Venus flytrap trigger hair-specific potassium channel KDM1 can reestablish the K+ gradient required for hapto-electric signaling, PLoS Biol., 18, e3000964, https://doi.org/10.1371/journal.pbio.3000964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vodeneev, V. A., Akinchits, E. K., Orlova, L. A., and Sukhov, V. S. (2011) The role of Ca2+, H+, and Cl ions in generation of variation potential in pumpkin plants, Russ. J. Plant Physiol., 58, 974-981, https://doi.org/10.1134/S1021443711050256.

    Article  CAS  Google Scholar 

  39. Shabala, S., Cuin, T. A., Shabala, L., and Newman, I. (2012) Quantifying kinetics of net ion fluxes from plant tissues by non-invasive microelectrode measuring MIFE technique, in Plant Salt Tolerance (Shabala, S., and Cuin, T. A., eds) Humana Press, Totowa, NJ, pp. 119-134, https://doi.org/10.1007/978-1-61779-986-0_7.

  40. Hilleary, R., Choi, W.-G., Kim, S.-H., Lim, S. D., and Gilroy, S. (2018) Sense and sensibility: the use of fluorescent protein-based genetically encoded biosensors in plants, Curr. Opin. Plant Biol., 46, 32-38, https://doi.org/10.1016/j.pbi.2018.07.004.

    Article  CAS  PubMed  Google Scholar 

  41. Lewis, B. D., Karlin-Neumann, C., and Spalding, E. P. (1997) Ca2+-activated anion channels and membrane depolarizations induced by blue light and cold in arabidopsis seedlings, Plant Physiol., 114, 1327-1334, https://doi.org/10.1104/pp.114.4.1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krol, E., Dziubinska, H., and Trebacz, K. (2004) Low-temperature-induced transmembrane potential changes in mesophyll cells of Arabidopsis thaliana, Helianthus annuus and Vicia faba, Physiol. Plant, 120, 265-270, https://doi.org/10.1111/j.0031-9317.2004.0244.x.

    Article  CAS  PubMed  Google Scholar 

  43. Vodeneev, V. A., Opritov, V. A., and Pyatygin, S. S. (2006) Reversible changes of extracellular pH during action potential generation in a higher plant Cucurbita pepo, Russ. J. Plant Physiol., 53, 481-487, https://doi.org/10.1134/S102144370604008X.

    Article  CAS  Google Scholar 

  44. Dindas, J., Dreyer, I., Huang, S., Hedrich, R., and Roelfsema, M. R. G. (2021) A voltage-dependent Ca2+ homeostat operates in the plant vacuolar membrane, New Phytol., 230, 1449-1460, https://doi.org/10.1111/nph.17272.

    Article  CAS  PubMed  Google Scholar 

  45. Demidchik, V., Shabala, S., Isayenkov, S., Cuin, T. A., and Pottosin, I. (2018) Calcium transport across plant membranes: mechanisms and functions, New Phytol., 220, 49-69, https://doi.org/10.1111/nph.15266.

    Article  CAS  PubMed  Google Scholar 

  46. Dreyer, I., and Uozumi, N. (2011) Potassium channels in plant cells: potassium channels in plants, FEBS J., 278, 4293-4303, https://doi.org/10.1111/j.1742-4658.2011.08371.x.

    Article  CAS  PubMed  Google Scholar 

  47. Sharma, T., Dreyer, I., and Riedelsberger, J. (2013) The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana, Front. Plant Sci., 4, 224, https://doi.org/10.3389/fpls.2013.00224.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Naz, R., Khan, A., Alghamdi, B. S., Ashraf, G. M., Alghanmi, M., Ahmad, A., Bashir, S. S., and Haq, Q. M. R. (2022) An insight into animal glutamate receptors homolog of Arabidopsis thaliana and their potential applications – a review, Plants, 11, 2580, https://doi.org/10.3390/plants11192580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zheng, Y., Luo, L., Wei, J., Chen, Q., Yang, Y., Hu, X., and Kong, X. (2018) The glutamate receptors AtGLR1.2 and AtGLR1.3 increase cold tolerance by regulating jasmonate signaling in Arabidopsis thaliana, Biochem. Biophys. Res. Commun., 506, 895-900, https://doi.org/10.1016/j.bbrc.2018.10.153.

    Article  CAS  PubMed  Google Scholar 

  50. Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E., Gilliham, M., Liu, L.-H., Obermeyer, G., and Feijó, J. A. (2011) Glutamate receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil D-serine, Science, 332, 434-437, https://doi.org/10.1126/science.1201101.

    Article  CAS  PubMed  Google Scholar 

  51. Yu, B., Liu, N., Tang, S., Qin, T., and Huang, J. (2022) Roles of glutamate receptor-like channels (GLRs) in plant growth and response to environmental stimuli, Plants, 11, 3450, https://doi.org/10.3390/plants11243450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tapken, D., Anschütz, U., Liu, L.-H., Huelsken, T., Seebohm, G., Becker, D., and Hollmann, M. (2013) A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids, Sci. Signal., 6, ra47, https://doi.org/10.1126/scisignal.2003762.

    Article  CAS  PubMed  Google Scholar 

  53. Nguyen, C. T., Kurenda, A., Stolz, S., Chételat, A., and Farmer, E. E. (2018) Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant, Proc. Natl. Acad. Sci. USA, 115, 10178-10183, https://doi.org/10.1073/pnas.1807049115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Meyerhoff, O., Müller, K., Roelfsema, M. R. G., Latz, A., Lacombe, B., Hedrich, R., Dietrich, P., and Becker, D. (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold, Planta, 222, 418-427, https://doi.org/10.1007/s00425-005-1551-3.

    Article  CAS  PubMed  Google Scholar 

  55. Ghosh, S., Bheri, M., and Pandey, G. K. (2021) Delineating calcium signaling machinery in plants: tapping the potential through functional genomics, Curr. Genomics, 22, 404-439, https://doi.org/10.2174/1389202922666211130143328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Salvador-Recatalà, V. (2016) New roles for the glutamate receptor-like 3.3, 3.5, and 3.6 genes as on/off switches of wound-induced systemic electrical signals, Plant Signal. Behav., 11, e1161879, https://doi.org/10.1080/15592324.2016.1161879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Toyota, M., Spencer, D., Sawai-Toyota, S., Jiaqi, W., Zhang, T., Koo, A. J., Howe, G. A., and Gilroy, S. (2018) Glutamate triggers long-distance, calcium-based plant defense signaling, Science, 361, 1112-1115, https://doi.org/10.1126/science.aat7744.

    Article  CAS  PubMed  Google Scholar 

  58. K. Jha, S., Sharma, M., and K. Pandey, G. (2016) Role of cyclic nucleotide gated channels in stress management in plants, Curr. Genomics, 17, 315-329, https://doi.org/10.2174/1389202917666160331202125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang, L., Ning, Y., Sun, J., Wilkins, K. A., Matthus, E., McNelly, R. E., Dark, A., Rubio, L., Moeder, W., Yoshioka, K., Véry, A., Stacey, G., Leblanc-Fournier, N., Legué, V., Moulia, B., and Davies, J. M. (2022) Arabidopsis thaliana cyclic nucleotide-gated channel2 mediates extracellular ATP signal transduction in root epidermis, New Phytol., 234, 412-421, https://doi.org/10.1111/nph.17987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gobert, A., Park, G., Amtmann, A., Sanders, D., and Maathuis, F. J. M. (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport, J. Exp. Bot., 57, 791-800, https://doi.org/10.1093/jxb/erj064.

    Article  CAS  PubMed  Google Scholar 

  61. Wang, Y.-F., Munemasa, S., Nishimura, N., Ren, H.-M., Robert, N., Han, M., Puzõrjova, I., Kollist, H., Lee, S., Mori, I., and Schroeder, J. I. (2013) Identification of cyclic GMP-activated nonselective Ca2+-permeable cation channels and associated CNGC5 and CNGC6 genes in Arabidopsis guard cells, Plant Physiol., 163, 578-590, https://doi.org/10.1104/pp.113.225045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gao, F., Han, X., Wu, J., Zheng, S., Shang, Z., Sun, D., Zhou, R., and Li, B. (2012) A heat-activated calcium-permeable channel – Arabidopsis cyclic nucleotide-gated ion channel 6 – is involved in heat shock responses: CNGC6 is a heat-activated calcium channel, Plant J., 70, 1056-1069, https://doi.org/10.1111/j.1365-313X.2012.04969.x.

    Article  CAS  PubMed  Google Scholar 

  63. Tunc-Ozdemir, M., Rato, C., Brown, E., Rogers, S., Mooneyham, A., Frietsch, S., Myers, C. T., Poulsen, L. R., Malhó, R., and Harper, J. F. (2013) Cyclic nucleotide gated channels 7 and 8 Are essential for male reproductive fertility, PLoS One, 8, e55277, https://doi.org/10.1371/journal.pone.0055277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Christopher, D. A., Borsics, T., Yuen, C. Y., Ullmer, W., Andème-Ondzighi, C., Andres, M. A., Kang, B.-H., and Staehelin, L. A. (2007) The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells, BMC Plant Biol., 7, 48, https://doi.org/10.1186/1471-2229-7-48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yoshioka, K., Moeder, W., Kang, H.-G., Kachroo, P., Masmoudi, K., Berkowitz, G., and Klessig, D. F. (2006) The chimeric Arabidopsis cyclic nucleotide-gated ion channel11/12 activates multiple pathogen resistance responses, Plant Cell, 18, 747-763, https://doi.org/10.1105/tpc.105.038786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shih, H.-W., DePew, C. L., Miller, N. D., and Monshausen, G. B. (2015) The cyclic nucleotide-gated channel CNGC14 regulates root gravitropism in Arabidopsis thaliana, Curr. Biol., 25, 3119-3125, https://doi.org/10.1016/j.cub.2015.10.025.

    Article  CAS  PubMed  Google Scholar 

  67. DeFalco, T. A., Moeder, W., and Yoshioka, K. (2016) Opening the gates: insights into cyclic nucleotide-gated channel-mediated signaling, Trends Plant Sci., 21, 903-906, https://doi.org/10.1016/j.tplants.2016.08.011.

    Article  CAS  PubMed  Google Scholar 

  68. Tipper, E., Leitão, N., Dangeville, P., Lawson, D. M., and Charpentier, M. (2023) A novel mutant allele of AtCNGC15 reveals a dual function of nuclear calcium release in the root meristem, J. Exp. Bot., 74, 2572-2584, https://doi.org/10.1093/jxb/erad041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tunc-Ozdemir, M., Tang, C., Ishka, M. R., Brown, E., Groves, N. R., Myers, C. T., Rato, C., Poulsen, L. R., McDowell, S., Miller, G., Mittler, R., and Harper, J. F. (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development, Plant Physiol., 161, 1010-1020, https://doi.org/10.1104/pp.112.206888.

    Article  CAS  PubMed  Google Scholar 

  70. Ladwig, F., Dahlke, R. I., Stührwohldt, N., Hartmann, J., Harter, K., and Sauter, M. (2015) Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes cyclic nucleotide-gated channel17, H+-ATPase, and BAK1, Plant Cell, 27, 1718-1729, https://doi.org/10.1105/tpc.15.00306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Meena, M. K., Prajapati, R., Krishna, D., Divakaran, K., Pandey, Y., Reichelt, M., Mathew, M. K., Boland, W., Mithöfer, A., and Vadassery, J. (2019) The Ca2+ channel CNGC19 regulates Arabidopsis defense against spodoptera herbivory, Plant Cell, 31, 1539-1562, https://doi.org/10.1105/tpc.19.00057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wang, X., Ma, X., Wang, H., Li, B., Clark, G., Guo, Y., Roux, S., Sun, D., and Tang, W. (2015) Proteomic study of microsomal proteins reveals a key role for Arabidopsis annexin 1 in mediating heat stress-induced increase in intracellular calcium levels, Mol. Cell. Proteomics, 14, 686-694, https://doi.org/10.1074/mcp.M114.042697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu, Q., Ding, Y., Shi, Y., Ma, L., Wang, Y., Song, C., Wilkins, K. A., Davies, J. M., Knight, H., Knight, M. R., Gong, Z., Guo, Y., and Yang, S. (2021) The calcium transporter ANNEXIN1 mediates cold-induced calcium signaling and freezing tolerance in plants, EMBO J., 40, e104559, https://doi.org/10.15252/embj.2020104559.

    Article  CAS  PubMed  Google Scholar 

  74. Liu, T., Du, L., Li, Q., Kang, J., Guo, Q., and Wang, S. (2021) AtCRY2 negatively regulates the functions of AtANN2 and AtANN3 in drought tolerance by affecting their subcellular localization and transmembrane Ca2+ flow, Front. Plant Sci., 12, 754567, https://doi.org/10.3389/fpls.2021.754567.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Davies, J. (2014) Annexin-mediated calcium signalling in plants, Plants, 3, 128-140, https://doi.org/10.3390/plants3010128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Huh, S. M., Noh, E. K., Kim, H. G., Jeon, B. W., Bae, K., Hu, H.-C., Kwak, J. M., and Park, O. K. (2010) Arabidopsis annexins AnnAt1 and AnnAt4 interact with each other and regulate drought and salt stress responses, Plant Cell Physiol., 51, 1499-1514, https://doi.org/10.1093/pcp/pcq111.

    Article  CAS  PubMed  Google Scholar 

  77. Laohavisit, A., Shang, Z., Rubio, L., Cuin, T. A., Véry, A.-A., Wang, A., Mortimer, J. C., Macpherson, N., Coxon, K. M., Battey, N. H., Brownlee, C., Park, O. K., Sentenac, H., Shabala, S., Webb, A. A. R., and Davies, J. M. (2012) Arabidopsis Annexin1 mediates the radical-activated plasma membrane Ca2+- and K+-permeable conductance in root cells, Plant Cell, 24, 1522-1533, https://doi.org/10.1105/tpc.112.097881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lichocka, M., Rymaszewski, W., Morgiewicz, K., Barymow-Filoniuk, I., Chlebowski, A., Sobczak, M., Samuel, M. A., Schmelzer, E., Krzymowska, M., and Hennig, J. (2018) Nucleus- and plastid-targeted annexin 5 promotes reproductive development in Arabidopsis and is essential for pollen and embryo formation, BMC Plant Biol., 18, 183, https://doi.org/10.1186/s12870-018-1405-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhu, J., Wu, X., Yuan, S., Qian, D., Nan, Q., An, L., and Xiang, Y. (2014) Annexin5 plays a vital role in Arabidopsis pollen development via Ca2+-dependent membrane trafficking, PLoS One, 9, e102407, https://doi.org/10.1371/journal.pone.0102407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yadav, D., Ahmed, I., Shukla, P., Boyidi, P., and Kirti, P. (2016) Overexpression of Arabidopsis AnnAt8 alleviates abiotic stress in transgenic Arabidopsis and tobacco, Plants, 5, 18, https://doi.org/10.3390/plants5020018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Evans, M. J., Choi, W.-G., Gilroy, S., and Morris, R. J. (2016) A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress, Plant Physiol., 171, 1771-1784, https://doi.org/10.1104/pp.16.00215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yamanaka, T., Nakagawa, Y., Mori, K., Nakano, M., Imamura, T., Kataoka, H., Terashima, A., Iida, K., Kojima, I., Katagiri, T., Shinozaki, K., and Iida, H. (2010) MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis, Plant Physiol., 152, 1284-1296, https://doi.org/10.1104/pp.109.147371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hattori, T., Otomi, Y., Nakajima, Y., Soga, K., Wakabayashi, K., Iida, H., and Hoson, T. (2020) MCA1 and MCA2 are involved in the response to hypergravity in Arabidopsis hypocotyls, Plants, 9, 590, https://doi.org/10.3390/plants9050590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yuan, F., Yang, H., Xue, Y., Kong, D., Ye, R., Li, C., Zhang, J., Theprungsirikul, L., Shrift, T., Krichilsky, B., Johnson, D. M., Swift, G. B., He, Y., Siedow, J. N., and Pei, Z.-M. (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis, Nature, 514, 367-371, https://doi.org/10.1038/nature13593.

    Article  CAS  PubMed  Google Scholar 

  85. Thor, K., Jiang, S., Michard, E., George, J., Scherzer, S., Huang, S., Dindas, J., Derbyshire, P., Leitão, N., DeFalco, T. A., Köster, P., Hunter, K., Kimura, S., Gronnier, J., Stransfeld, L., Kadota, Y., Bücherl, C. A., Charpentier, M., Wrzaczek, M., MacLean, D., Oldroyd, G. E. D., Menke, F. L. H., Roelfsema, M. R. G., Hedrich, R., Feijó, J., and Zipfel, C. (2020) The calcium-permeable channel OSCA1.3 regulates plant stomatal immunity, Nature, 585, 569-573, https://doi.org/10.1038/s41586-020-2702-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fang, X., Liu, B., Shao, Q., Huang, X., Li, J., Luan, S., and He, K. (2021) AtPiezo plays an important role in root cap mechanotransduction, Int. J. Mol. Sci., 22, 467, https://doi.org/10.3390/ijms22010467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Radin, I., Richardson, R. A., Coomey, J. H., Weiner, E. R., Bascom, C. S., Li, T., Bezanilla, M., and Haswell, E. S. (2021) Plant PIEZO homologs modulate vacuole morphology during tip growth, Science, 373, 586-590, https://doi.org/10.1126/science.abe6310.

    Article  CAS  PubMed  Google Scholar 

  88. Tran, D., Galletti, R., Neumann, E. D., Dubois, A., Sharif-Naeini, R., Geitmann, A., Frachisse, J.-M., Hamant, O., and Ingram, G. C. (2017) A mechanosensitive Ca2+ channel activity is dependent on the developmental regulator DEK1, Nat. Commun., 8, 1009, https://doi.org/10.1038/s41467-017-00878-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, C. P., Maksaev, G., Jensen, G. S., Murcha, M. W., Wilson, M. E., Fricker, M., Hell, R., Haswell, E. S., Millar, A. H., and Sweetlove, L. J. (2016) MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress, Plant J., 88, 809-825, https://doi.org/10.1111/tpj.13301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hamilton, E. S., Schlegel, A. M., and Haswell, E. S. (2015) United in diversity: mechanosensitive ion channels in plants, Annu. Rev. Plant Biol., 66, 113-137, https://doi.org/10.1146/annurev-arplant-043014-114700.

    Article  CAS  PubMed  Google Scholar 

  91. Hamilton, E. S., Jensen, G. S., Maksaev, G., Katims, A., Sherp, A. M., and Haswell, E. S. (2015) Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination, Science, 350, 438-441, https://doi.org/10.1126/science.aac6014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Haswell, E. S., Peyronnet, R., Barbier-Brygoo, H., Meyerowitz, E. M., and Frachisse, J.-M. (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root, Curr. Biol., 18, 730-734, https://doi.org/10.1016/j.cub.2008.04.039.

    Article  CAS  PubMed  Google Scholar 

  93. Moe-Lange, J., Gappel, N. M., Machado, M., Wudick, M. M., Sies, C. S. A., Schott-Verdugo, S. N., Bonus, M., Mishra, S., Hartwig, T., Bezrutczyk, M., Basu, D., Farmer, E. E., Gohlke, H., Malkovskiy, A., Haswell, E. S., Lercher, M. J., Ehrhardt, D. W., Frommer, W. B., and Kleist, T. J. (2021) Interdependence of a mechanosensitive anion channel and glutamate receptors in distal wound signaling, Sci. Adv., 7, eabg4298, https://doi.org/10.1126/sciadv.abg4298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tran, D., Girault, T., Guichard, M., Thomine, S., Leblanc-Fournier, N., Moulia, B., De Langre, E., Allain, J.-M., and Frachisse, J.-M. (2021) Cellular transduction of mechanical oscillations in plants by the plasma-membrane mechanosensitive channel MSL10, Proc. Natl. Acad. Sci. USA, 118, e1919402118, https://doi.org/10.1073/pnas.1919402118.

    Article  CAS  PubMed  Google Scholar 

  95. Guerringue, Y., Thomine, S., and Frachisse, J.-M. (2018) Sensing and transducing forces in plants with MSL10 and DEK1 mechanosensors, FEBS Lett., 592, 1968-1979, https://doi.org/10.1002/1873-3468.13102.

    Article  CAS  PubMed  Google Scholar 

  96. Basu, D., and Haswell, E. S. (2020) The mechanosensitive ion channel MSL10 potentiates responses to cell swelling in Arabidopsis seedlings, Curr. Biol., 30, 2716-2728.e6, https://doi.org/10.1016/j.cub.2020.05.015.

    Article  CAS  PubMed  Google Scholar 

  97. Hedrich, R., and Geiger, D. (2017) Biology of SLAC1-type anion channels – from nutrient uptake to stomatal closure, New Phytol., 216, 46-61, https://doi.org/10.1111/nph.14685.

    Article  CAS  PubMed  Google Scholar 

  98. Barbier-Brygoo, H., De Angeli, A., Filleur, S., Frachisse, J.-M., Gambale, F., Thomine, S., and Wege, S. (2011) Anion channels/transporters in plants: from molecular bases to regulatory networks, Annu. Rev. Plant Biol., 62, 25-51, https://doi.org/10.1146/annurev-arplant-042110-103741.

    Article  CAS  PubMed  Google Scholar 

  99. Lehmann, J., Jørgensen, M. E., Fratz, S., Müller, H. M., Kusch, J., Scherzer, S., Navarro-Retamal, C., Mayer, D., Böhm, J., Konrad, K. R., Terpitz, U., Dreyer, I., Mueller, T. D., Sauer, M., Hedrich, R., Geiger, D., and Maierhofer, T. (2021) Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis, Curr. Biol., 31, 3575-3585.e9, https://doi.org/10.1016/j.cub.2021.06.018.

    Article  CAS  PubMed  Google Scholar 

  100. Ye, W., Koya, S., Hayashi, Y., Jiang, H., Oishi, T., Kato, K., Fukatsu, K., and Kinoshita, T. (2021) Identification of genes preferentially expressed in stomatal guard cells of Arabidopsis thaliana and involvement of the aluminum-activated malate transporter 6 vacuolar malate channel in stomatal opening, Front. Plant Sci., 12, 744991, https://doi.org/10.3389/fpls.2021.744991.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Meyer, S., Scholz-Starke, J., De Angeli, A., Kovermann, P., Burla, B., Gambale, F., and Martinoia, E. (2011) Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation: AtALMT6 mediates malate transport in guard cells, Plant J., 67, 247-257, https://doi.org/10.1111/j.1365-313X.2011.04587.x.

    Article  CAS  PubMed  Google Scholar 

  102. Boccaccio, A., Picco, C., Di Zanni, E., and Scholz-Starke, J. (2022) Phospholipid scrambling by a TMEM16 homolog of Arabidopsis thaliana, FEBS J., 289, 2578-2592, https://doi.org/10.1111/febs.16279.

    Article  CAS  PubMed  Google Scholar 

  103. Zhang, H., Zhao, F.-G., Tang, R.-J., Yu, Y., Song, J., Wang, Y., Li, L., and Luan, S. (2017) Two tonoplast MATE proteins function as turgor-regulating chloride channels in Arabidopsis, Proc. Natl. Acad. Sci. USA, 114, E2036-E2045, https://doi.org/10.1073/pnas.1616203114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Herdean, A., Teardo, E., Nilsson, A. K., Pfeil, B. E., Johansson, O. N., Ünnep, R., Nagy, G., Zsiros, O., Dana, S., Solymosi, K., Garab, G., Szabó, I., Spetea, C., and Lundin, B. (2016) A voltage-dependent chloride channel fine-tunes photosynthesis in plants, Nat. Commun., 7, 11654, https://doi.org/10.1038/ncomms11654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cuin, T., Dreyer, I., and Michard, E. (2018) The role of potassium channels in Arabidopsis thaliana long distance electrical signalling: AKT2 modulates tissue excitability while GORK shapes action potentials, Int. J. Mol. Sci., 19, 926, https://doi.org/10.3390/ijms19040926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Demidchik, V., Cuin, T. A., Svistunenko, D., Smith, S. J., Miller, A. J., Shabala, S., Sokolik, A., and Yurin, V. (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death, J. Cell Sci., 123, 1468-1479, https://doi.org/10.1242/jcs.064352.

    Article  CAS  PubMed  Google Scholar 

  107. Gaymard, F., Pilot, G., Lacombe, B., Bouchez, D., Bruneau, D., Boucherez, J., Michaux-Ferrière, N., Thibaud, J.-B., and Sentenac, H. (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap, Cell, 94, 647-655, https://doi.org/10.1016/S0092-8674(00)81606-2.

    Article  CAS  PubMed  Google Scholar 

  108. Lebaudy, A., Pascaud, F., Véry, A.-A., Alcon, C., Dreyer, I., Thibaud, J.-B., and Lacombe, B. (2010) Preferential KAT1-KAT2 heteromerization determines inward K+ current properties in Arabidopsis guard cells, J. Biol. Chem., 285, 6265-6274, https://doi.org/10.1074/jbc.M109.068445.

    Article  CAS  PubMed  Google Scholar 

  109. Jeanguenin, L., Alcon, C., Duby, G., Boeglin, M., Chérel, I., Gaillard, I., Zimmermann, S., Sentenac, H., and Véry, A.-A. (2011) AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity: Modulatory subunit of inward K+ channel activity, Plant J., 67, 570-582, https://doi.org/10.1111/j.1365-313X.2011.04617.x.

    Article  CAS  PubMed  Google Scholar 

  110. Kwak, J. M., Murata, Y., Baizabal-Aguirre, V. M., Merrill, J., Wang, M., Kemper, A., Hawke, S. D., Tallman, G., and Schroeder, J. I. (2001) Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in Arabidopsis, Plant Physiol., 127, 473-485, https://doi.org/10.1104/pp.010428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Michard, E., Dreyer, I., Lacombe, B., Sentenac, H., and Thibaud, J.-B. (2005) Inward rectification of the AKT2 channel abolished by voltage-dependent phosphorylation: regulation of AKT2 by phosphorylation, Plant J., 44, 783-797, https://doi.org/10.1111/j.1365-313X.2005.02566.x.

    Article  CAS  PubMed  Google Scholar 

  112. Gobert, A., Isayenkov, S., Voelker, C., Czempinski, K., and Maathuis, F. J. M. (2007) The two-pore channel TPK1 gene encodes the vacuolar K+ conductance and plays a role in K+ homeostasis, Proc. Natl. Acad. Sci. USA, 104, 10726-10731, https://doi.org/10.1073/pnas.0702595104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Becker, D., Geiger, D., Dunkel, M., Roller, A., Bertl, A., Latz, A., Carpaneto, A., Dietrich, P., Roelfsema, M. R. G., Voelker, C., Schmidt, D., Mueller-Roeber, B., Czempinski, K., and Hedrich, R. (2004) AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner, Proc. Natl. Acad. Sci. USA, 101, 15621-15626, https://doi.org/10.1073/pnas.0401502101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rocchetti, A., Sharma, T., Wulfetange, C., Scholz-Starke, J., Grippa, A., Carpaneto, A., Dreyer, I., Vitale, A., Czempinski, K., and Pedrazzini, E. (2012) The putative K+ channel subunit AtKCO3 forms stable dimers in Arabidopsis, Front. Plant Sci., 3, 251, https://doi.org/10.3389/fpls.2012.00251.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Li, D.-D., Guan, H., Li, F., Liu, C.-Z., Dong, Y.-X., Zhang, X.-S., and Gao, X.-Q. (2017) Arabidopsis shaker pollen inward K+ channel SPIK functions in SnRK1 complex-regulated pollen hydration on the stigma: SPIK functions in pollen hydration on stigma, J. Integr. Plant Biol., 59, 604-611, https://doi.org/10.1111/jipb.12563.

    Article  CAS  PubMed  Google Scholar 

  116. Jammes, F., Hu, H.-C., Villiers, F., Bouten, R., and Kwak, J. M. (2011) Calcium-permeable channels in plant cells: plant calcium channels, FEBS J., 278, 4262-4276, https://doi.org/10.1111/j.1742-4658.2011.08369.x.

    Article  CAS  PubMed  Google Scholar 

  117. Basu, D., and Haswell, E. S. (2017) Plant mechanosensitive ion channels: an ocean of possibilities, Curr. Opin. Plant Biol., 40, 43-48, https://doi.org/10.1016/j.pbi.2017.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mori, K., Renhu, N., Naito, M., Nakamura, A., Shiba, H., Yamamoto, T., Suzaki, T., Iida, H., and Miura, K. (2018) Ca2+-permeable mechanosensitive channels MCA1 and MCA2 mediate cold-induced cytosolic Ca2+ increase and cold tolerance in Arabidopsis, Sci. Rep., 8, 550, https://doi.org/10.1038/s41598-017-17483-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, Z., Tong, X., Liu, S.-Y., Chai, L.-X., Zhu, F.-F., Zhang, X.-P., Zou, J.-Z., and Wang, X.-B. (2019) Genetic analysis of a Piezo-like protein suppressing systemic movement of plant viruses in Arabidopsis thaliana, Sci. Rep., 9, 3187, https://doi.org/10.1038/s41598-019-39436-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Véry, A.-A., and Sentenac, H. (2003) Molecular mechanisms and regulation of K+ transport in higher plants, Annu. Rev. Plant Biol., 54, 575-603, https://doi.org/10.1146/annurev.arplant.54.031902.134831.

    Article  PubMed  Google Scholar 

  121. Vincent, T. R., Avramova, M., Canham, J., Higgins, P., Bilkey, N., Mugford, S. T., Pitino, M., Toyota, M., Gilroy, S., Miller, A. J., Hogenhout, S. A., and Sanders, D. (2017) Interplay of plasma membrane and vacuolar ion channels, together with BAK1, elicits rapid cytosolic calcium elevations in Arabidopsis during aphid feeding, Plant Cell, 29, 1460-1479, https://doi.org/10.1105/tpc.17.00136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Fichman, Y., and Mittler, R. (2021) Integration of electric, calcium, reactive oxygen species and hydraulic signals during rapid systemic signaling in plants, Plant J., 107, 7-20, https://doi.org/10.1111/tpj.15360.

    Article  CAS  PubMed  Google Scholar 

  123. Yu, B., Wu, Q., Li, X., Zeng, R., Min, Q., and Huang, J. (2022) Glutamate receptor-like gene OsGLR3.4 is required for plant growth and systemic wound signaling in rice (Oryza sativa), New Phytol., 233, 1238-1256, https://doi.org/10.1111/nph.17859.

    Article  CAS  PubMed  Google Scholar 

  124. Kong, D., Hu, H.-C., Okuma, E., Lee, Y., Lee, H. S., Munemasa, S., Cho, D., Ju, C., Pedoeim, L., Rodriguez, B., Wang, J., Im, W., Murata, Y., Pei, Z.-M., and Kwak, J. M. (2016) L-Met activates Arabidopsis GLR Ca2+ channels upstream of ROS production and regulates stomatal movement, Cell Rep., 17, 2553-2561, https://doi.org/10.1016/j.celrep.2016.11.015.

    Article  CAS  PubMed  Google Scholar 

  125. Veley, K. M., Maksaev, G., Frick, E. M., January, E., Kloepper, S. C., and Haswell, E. S. (2014) Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive ion channel activity, Plant Cell, 26, 3115-3131, https://doi.org/10.1105/tpc.114.128082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Xue, N., Zhan, C., Song, J., Li, Y., Zhang, J., Qi, J., and Wu, J. (2022) The glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect herbivores in Arabidopsis, J. Exp. Bot., 73, 7611-7627, https://doi.org/10.1093/jxb/erac399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bellandi, A., Papp, D., Breakspear, A., Joyce, J., Johnston, M. G., de Keijzer, J., Raven, E. C., Ohtsu, M., Vincent, T. R., Miller, A. J., Sanders, D., Hogenhout, S. A., Morris, R. J., and Faulkner, C. (2022) Diffusion and bulk flow of amino acids mediate calcium waves in plants, Sci. Adv., 8, eabo6693, https://doi.org/10.1126/sciadv.abo6693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hu, C., Duan, S., Zhou, J., and Yu, J. (2021) Characteristics of herbivory/wound-elicited electrical signal transduction in tomato, Front. Agr. Sci. Eng., 8, 292-301, https://doi.org/10.15302/J-FASE-2021395.

    Article  Google Scholar 

  129. Scherzer, S., Böhm, J., Huang, S., Iosip, A. L., Kreuzer, I., Becker, D., Heckmann, M., Al-Rasheid, K. A. S., Dreyer, I., and Hedrich, R. (2022) A unique inventory of ion transporters poises the Venus flytrap to fast-propagating action potentials and calcium waves, Curr. Biol., 32, 4255-4263.e5, https://doi.org/10.1016/j.cub.2022.08.051.

    Article  CAS  PubMed  Google Scholar 

  130. Hedrich, R., and Kreuzer, I. (2023) Demystifying the Venus flytrap action potential, New Phytol., 239, 2108-2112, https://doi.org/10.1111/nph.19113.

    Article  CAS  PubMed  Google Scholar 

  131. Zeng, H., Zhao, B., Wu, H., Zhu, Y., and Chen, H. (2020) Comprehensive in silico characterization and expression profiling of nine gene families associated with calcium transport in soybean, Agronomy, 10, 1539, https://doi.org/10.3390/agronomy10101539.

    Article  CAS  Google Scholar 

  132. Maksaev, G., and Haswell, E. S. (2012) MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions, Proc. Natl. Acad. Sci. USA, 109, 19015-19020, https://doi.org/10.1073/pnas.1213931109.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Choi, W.-G., Toyota, M., Kim, S.-H., Hilleary, R., and Gilroy, S. (2014) Salt stress-induced Ca2+ waves are associated with rapid, long-distance root-to-shoot signaling in plants, Proc. Natl. Acad. Sci. USA, 111, 6497-6502, https://doi.org/10.1073/pnas.1319955111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kiep, V., Vadassery, J., Lattke, J., Maaß, J., Boland, W., Peiter, E., and Mithöfer, A. (2015) Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis, New Phytol., 207, 996-1004, https://doi.org/10.1111/nph.13493.

    Article  CAS  PubMed  Google Scholar 

  135. Cui, Y., Lu, S., Li, Z., Cheng, J., Hu, P., Zhu, T., Wang, X., Jin, M., Wang, X., Li, L., Huang, S., Zou, B., and Hua, J. (2020) Cyclic nucleotide-gated ion Channels 14 and 16 promote tolerance to heat and chilling in rice, Plant Physiol., 183, 1794-1808, https://doi.org/10.1104/pp.20.00591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Finka, A., Cuendet, A. F. H., Maathuis, F. J. M., Saidi, Y., and Goloubinoff, P. (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance, Plant Cell, 24, 3333-3348, https://doi.org/10.1105/tpc.112.095844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Science Foundation, grant 22-14-00388.

Author information

Authors and Affiliations

Authors

Contributions

V.A.V. concept and supervision of the study; M.A.M., M.M.L., D.V.K., and V.A.V. search for materials; M.A.M. and M.M.L. writing text of the paper; M.M.L. and D.V.K. preparation of figures; M.A.M., M.M.L., and V.A.V. editing text of the paper.

Corresponding author

Correspondence to Vladimir A. Vodeneev.

Ethics declarations

The authors declare no conflicts of interests in financial or any other spheres. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudrilov, M.A., Ladeynova, M.M., Kuznetsova, D.V. et al. Ion Channels in Electrical Signaling in Higher Plants. Biochemistry Moscow 88, 1467–1487 (2023). https://doi.org/10.1134/S000629792310005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792310005X

Keywords

Navigation