Skip to main content
Log in

Upregulation of YciM Expression Reduces Endotoxin Contamination of Recombinant Proteins Produced in Escherichia coli Cells

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Recombinant proteins produced in Escherichia coli are often contaminated with endotoxins, which can be a serious problem for their further application. One of the possible solutions is the use of modified strains with reduced lipopolysaccharide (LPS) levels. We compared two approaches to engineering such strains. The first commonly known approach was modification of LPS biosynthesis pathway by knocking out seven genes in the E. coli genome. The second approach, which has not been previously used, was to increase expression of E. coli protein YciM. According to the published data, elevated expression of YciM leads to the reduction in the amount of the LpxC enzyme involved in LPS biosynthesis. We investigated the impact of YciM coexpression with eGFP on the content of endotoxins in the purified recombinant eGFP samples. Both approaches provided similar outcomes, i.e., decreased the endotoxin levels in the purified protein samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Abbreviations

LPS:

lipopolysaccharide

OD:

optical density

References

  1. Raetz, C. R., and Whitfield, C. (2002) Lipopolysaccharide endotoxins, Annu. Rev. Biochem., 71, 635-700, https://doi.org/10.1146/annurev.biochem.71.110601.135414.

    Article  CAS  PubMed  Google Scholar 

  2. Bos, M. P., Robert, V., and Tommassen, J. (2007) Biogenesis of the gram-negative bacterial outer membrane, Annu. Rev. Microbiol., 61, 191-214, https://doi.org/10.1146/annurev.micro.61.080706.093245.

    Article  CAS  PubMed  Google Scholar 

  3. Yoon, S. H., Jeong, H., Kwon, S. K., and Kim, J. F. (2009) Genomics, Biological Features, and Biotechnological Applications of Escherichia coli B: “Is B for better?!”, in Systems Biology and Biotechnology of Escherichia coli (Lee, S. Y., ed) Springer, Dordrecht, https://doi.org/10.1007/978-1-4020-9394-4_1.

  4. Mamat, U., Wilke, K., Bramhill, D., Schromm, A. B., Lindner, B., Kohl, T. A., Corchero, J. L., Villaverde, A., Schaffer, L., Head, S. R., Souvignier, C., Meredith, T. C., and Woodard, R. W. (2015) Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins, Microb. Cell Fact., 14, 1-15, https://doi.org/10.1186/s12934-015-0241-5.

    Article  CAS  Google Scholar 

  5. Kayagaki, N., Wong, M. T., Stowe, I. B., Ramani, S. R., Gonzalez, L. C., Akashi-Takamura, S., Miyake, K., Zhang, J., Lee, W. P., Muszyński, A., Forsberg, L. S., Carlson, R. W., and Dixit, V. M. (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4, Science, 130, 1246-1249, https://doi.org/10.1126/science.1240248.

    Article  CAS  Google Scholar 

  6. Park, B. S., Song, D. H., Kim, H. M., Choi, B. S., Lee, H., and Lee, J.-Oh (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex, Nature, 458, 1191-1195, https://doi.org/10.1038/nature07830.

    Article  CAS  PubMed  Google Scholar 

  7. Mahalakshmi, S., Sunayana, M. R., Saisree, L., and Reddy, M. (2014) YciM is an essential gene required for regulation of lipopolysaccharide synthesis in Escherichia coli, Mol. Microbiol., 91, 145-157, https://doi.org/10.1111/mmi.12452.

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., and Yang, S. (2015) Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system, Appl. Environ. Microbiol., 81, 2506-2514, https://doi.org/10.1128/AEM.04023-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Klock, H. E., and Lesley, S. A. (2009) The Polymerase Incomplete Primer Extension (PIPE) method applied to high-throughput cloning and site-directed mutagenesis, Methods Mol. Biol., 498, 91-103, https://doi.org/10.1007/978-1-59745-196-3_6.

    Article  CAS  PubMed  Google Scholar 

  10. Dower, W. J., Miller, J. F., and Ragsdale, C. W. (1988) High efficiency transformation of E. coli by high voltage electroporation, Nucleic Acids Res., 16, 6127-6145, https://doi.org/10.1093/nar/16.13.6127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cormack, B. P., Valdivia, R. H., and Falkow, S. (1996) FACS-optimized mutants of the green fluorescent protein (GFP), Gene, 173, 33-38, https://doi.org/10.1016/0378-1119(95)00685-0.

    Article  CAS  PubMed  Google Scholar 

  12. Mamat, U., Woodard, R. W., Wilke, K., Souvignier, C., Mead, D., Steinmetz, E., Terry, K., Kovacich, Ch., Zegers, A., and Knox, C. (2013) Endotoxin-free protein production – ClearColiTM technology, Nat. Methods, 10, 916, https://doi.org/10.1038/nmeth.f.367.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Russian Science Foundation (project no. 23-24-00080, https://rscf.ru/project/23-24-00080/ [in Russian]).

Author information

Authors and Affiliations

Authors

Contributions

P.A.B. and S.A.K. conducted genetic engineering experiments; D.D.Kh. performed bacterial endotoxin assays; K.A.B. and E.N.G. conducted microbiological experiments; V.A.M. purified the recombinant protein; V.N.L. supervised the study; P.A.B., D.D.Kh., and V.A.M. wrote the manuscript.

Corresponding author

Correspondence to Valentin A. Manuvera.

Ethics declarations

The authors declare no conflict of interest. This manuscript does not contain description of studies involving humans or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrovsky, P.A., Kharlampieva, D.D., Kirillin, S.A. et al. Upregulation of YciM Expression Reduces Endotoxin Contamination of Recombinant Proteins Produced in Escherichia coli Cells. Biochemistry Moscow 88, 1318–1325 (2023). https://doi.org/10.1134/S0006297923090110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923090110

Keywords

Navigation