Skip to main content
Log in

Analysis of Some Biochemical Properties of Recombinant Siberian Roe Deer (Capreolus pygargus) Chymosin Obtained in the Mammalian Cell Culture (CHO-K1)

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Structure of the chymosin gene of Siberian roe deer (Capreolus pygargus) was established for the first time and its exon/intron organization was determined. Coding part of the chymosin gene of C. pygargus was reconstructed by the Golden Gate method and obtained as a DNA clone. Comparative sequence analysis of the roe deer, cow, and one-humped camel prochymosins revealed a number of amino acid substitutions at the sites forming the substrate-binding cavity of the enzyme and affecting the S4 and S1′ + S3′ specificity subsites. Integration vector pIP1 was used to construct a plasmid pIP1-Cap in order to express recombinant roe deer prochymosin gene in CHO-K1 cells. CHO-K1-CYM-Cap pool cells were obtained, allowing synthesis and secretion of recombinant prochymosin into the culture fluid. As a result of zymogen activation, a recombinant roe deer chymosin was obtained and its total milk-clotting activity was estimated to be 468.4 ± 11.1 IMCU/ml. Yield of the recombinant roe deer chymosin was 500 mg/liter or ≈468,000 IMCU/liter, which exceeds the yields of genetically engineered chymosins in most of the expression systems used. Basic biochemical properties of the obtained enzyme were compared with the commercial preparations of recombinant chymosins from one-humped camel (Camelus dromedarius) and cow (Bos taurus). Specific milk-clotting activity of the recombinant chymosin of C. pygargus was 938 ± 22 IMCU/mg, which was comparable to that of the reference enzymes. Non-specific proteolytic activity of the recombinant roe deer chymosin was 1.4-4.5 times higher than that of the cow and camel enzymes. In terms of coagulation specificity, recombinant chymosin of C. pygargus occupied an intermediate position between the genetically engineered analogs of B. taurus and C. dromedarius chymosins. Thermostability threshold of the recombinant roe deer chymosin was 55°C. At 60°C, the enzyme retained <1% of its initial milk-clotting activity, and its complete thermal inactivation was observed at 65°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

a.a.:

amino acid

c.f.:

culture fluid

Chn:

chymosin

CHO:

Chinese hamster ovary

CN:

casein

MCA:

milk-clotting activity

PA:

proteolytic activity

ProChn:

prochymosin

rChn-Cap:

recombinant roe deer chymosin

rChn-Bos:

recombinant cow chymosin

rChn-Cam:

recombinant one-humped camel chymosin

TS:

thermostability

References

  1. Gilliland, G. L., Winborne, E. L., Nachman, J., and Wlodawer, A. (1990) The three-dimensional structure of recombinant bovine chymosin at 2.3 Å resolution, Proteins, 8, 82-101, https://doi.org/10.1002/prot.340080110.

    Article  CAS  PubMed  Google Scholar 

  2. Khan, A. R., Khazanovich-Bernstein, N., Bergmann, E. M., and James, M. N. (1999) Structural aspects of activation pathways of aspartic protease zymogens and viral 3C protease precursors, Proc. Natl. Acad. Sci. USA, 96, 10968-10975, https://doi.org/10.1073/pnas.96.20.10968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Richter, C., Tanaka, T., and Yada, R. Y. (1998) Mechanism of activation of the gastric aspartic proteinases: pepsinogen, progastricsin and prochymosin, Biochem. J., 335, 481-490, https://doi.org/10.1042/bj3350481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen, H., Zhang, G., Zhang, Y., Dong, Y., and Yang, K. (2000) Functional implications of disulfide bond, Cys206-Cys210, in recombinant prochymosin (chymosin), Biochemistry, 39, 12140-12148, https://doi.org/10.1021/bi000976o.

    Article  CAS  PubMed  Google Scholar 

  5. Eskandari, M. H., Hosseini, A., Alasvand Zarasvand, S., and Aminlari, M. (2012) Cloning, expression, purification and refolding of caprine prochymosin, Food Biotechnol., 26, 143-153, https://doi.org/10.1080/08905436.2012.670829.

    Article  CAS  Google Scholar 

  6. Belenkaya, S. V., Rudometov, A. P., Shcherbakov, D. N., Balabova, D. V., Kriger, A. V., et al. (2018) Biochemical properties of recombinant chymosin in alpaca (Vicugna pacos L.), Appl. Biochem. Microbiol., 54, 569-576, https://doi.org/10.1134/S0003683818060054.

    Article  CAS  Google Scholar 

  7. Balabova, D. V., Rudometov, A. P., Belenkaya, S. V., Belov, A. N., Koval, A. D., et al. (2022) Biochemical and technological properties of moose (Alces alces) recombinant chymosin, Vavilov J. Genet. Breeding, 26, 240-247, https://doi.org/10.18699/VJGB-22-31.

    Article  CAS  Google Scholar 

  8. Parente, D., de Ferra, F., Galli, G., and Grandi, G. (1991) Prochymosin expression in Bacillus subtilis, FEMS Microbiol. Lett., 77, 243-249, https://doi.org/10.1111/j.1574-6968.1991.tb04356.x.

    Article  CAS  Google Scholar 

  9. Liu, W. G., Wang, Y. P., Zhang, Z. J., Wang, M., Lv, Q. X., et al. (2017) Generation and characterization of caprine chymosin in corn seed, Protein Express. Purif., 135, 78-82, https://doi.org/10.1016/j.pep.2017.05.004.

    Article  CAS  Google Scholar 

  10. Wei, Z. Y., Zhang, Y. Y., Wang, Y. P., Fan, M. X., Zhong, X. F., et al. (2016) Production of bioactive recombinant bovine chymosin in tobacco plants, Int. J. Mol. Sci., 17, 624, https://doi.org/10.3390/ijms17050624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Azizi-Dargahlou, S., Ahmadabadi, M., and Valizadeh Kamran, R. (2022) Biolistic transformation and expression of functional chymosin from a codon-optimized synthetic bovine gene in tobacco plants, J. Med. Plants By-Product, https://doi.org/10.22092/jmpb.2022.356717.1425.

  12. Rozov, S. M., Permyakova, N. V., and Deineko, E. V. (2018) Main strategies of plant expression system glycoengineering for producing humanized recombinant pharmaceutical proteins, Biochemistry (Moscow), 83, 215-232, https://doi.org/10.1134/S0006297918030033.

    Article  CAS  PubMed  Google Scholar 

  13. Kappeler, S. R., Rahbek-Nielsen, H., Farah, Z., Puhan, Z., Hansen, E. B., and Johansen, E. (2006) Characterization of recombinant camel chymosin reveals superior properties for the coagulation of bovine and camel milk, Biochem. Biophys. Res. Commun., 342, 647-654, https://doi.org/10.1016/j.bbrc.2006.02.014.

    Article  CAS  PubMed  Google Scholar 

  14. Vallejo, J. A., Ageitos, J. M., Poza, M., and Villa, T. G. (2008) Cloning and expression of buffalo active chymosin in Pichia pastoris, J. Agricult. Food Chem., 56, 10606-10610, https://doi.org/10.1021/jf802339e.

    Article  CAS  Google Scholar 

  15. Espinoza-Molina, J. A., Acosta-Muñiz, C. H., Sepulveda, D. R., Zamudio-Flores, P. B., and Rios-Velasco, C. (2016) Codon optimization of the “Bos Taurus Chymosin” gene for the production of recombinant chymosin in Pichia pastoris, Mol. Biotechnol., 58, 657-664, https://doi.org/10.1007/s12033-016-9965-7.

    Article  CAS  PubMed  Google Scholar 

  16. Kappeler, S., Farah, Z., van den Brink, J. M., Rahbek-Nielsen, H., and Budtz, P. (2016) U.S. Patent No. 9,307,775, Washington, DC, U.S. Patent and Trademark Office.

  17. Belenkaya, S. V., Elchaninov, V. V., Shcherbakov, D. N. (2021) Development of a producer of recombinant maral chimosine based on the Kluyveromyces lactis yeast [In Russian], Biotekhnologiya, 37, 20-27, https://doi.org/10.21519/0234-2758-2021-37-5-20-27.

    Article  Google Scholar 

  18. Uniacke-Lowe, T., and Fox, P. F. (2017) Chymosin, pepsins and other aspartyl proteinases: Structures, functions, catalytic mechanism and milk-clotting properties, in Cheese: Chemistry, Physics and Microbiology, Elsevier, Academic Press, pp. 69-113, https://doi.org/10.1016/B978-0-12-417012-4.00004-1.

  19. Gottlieb, T. A., Beaudry, G., Rizzolo, L., Colman, A., Rindler, M., et al. (1986) Secretion of endogenous and exogenous proteins from polarized MDCK cell monolayers, Proc. Natl. Acad. Sci. USA, 83, 2100-2104, https://doi.org/10.1073/pnas.83.7.2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kolmer, M., Örd, T., and Ulmanen, I. (1991) Expression of recombinant calf prochymosin in mammalian cell culture, J. Biotechnol., 20, 131-139, https://doi.org/10.1016/0168-1656(91)90222-H.

    Article  CAS  PubMed  Google Scholar 

  21. McKenzie, E. A., and Abbott, W. M. (2018) Expression of recombinant proteins in insect and mammalian cells, Methods, 147, 40-49, https://doi.org/10.1016/j.ymeth.2018.05.013.

    Article  CAS  PubMed  Google Scholar 

  22. Zhu, J. (2012) Mammalian cell protein expression for biopharmaceutical production, Biotechnol. Adv., 30, 1158-1170, https://doi.org/10.1016/j.biotechadv.2011.08.022.

    Article  CAS  PubMed  Google Scholar 

  23. Kunert, R., and Reinhart, D. (2016) Advances in recombinant antibody manufacturing, Appl. Microbiol. Biotechnol., 100, 3451-3461, https://doi.org/10.1007/s00253-016-7388-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tihanyi, B., and Nyitray, L. (2020) Recent advances in CHO cell line development for recombinant protein production, Drug Discov. Today Technol., 38, 25-34, https://doi.org/10.1016/j.ddtec.2021.02.003.

    Article  PubMed  Google Scholar 

  25. Belenkaya, S. V., Shcherbakov, D. N., Balabova, D. V., Belov, A N., Koval, A. D., and Elchaninov, V. V. (2020) Production of maral (Cervus elaphus sibiricus Severtzov) recombinant chymosin in the prokaryotic expression system and the study of the aggregate of its biochemical properties relevant for the cheese-making industry, Appl. Biochem. Microbiol., 56, 647-656, https://doi.org/10.1134/S0003683820060034.

    Article  CAS  Google Scholar 

  26. Belenkaya, S. V., Bondar, A. A., Kurgina, T. A., Elchaninov, V. V., Bakulina, A. Y., Rukhlova, E. A., Lavrik, O. I., Ilyichev, A. A., and Shcherbakov, D. N. (2020) Characterization of the Altai maral chymosin gene, production of a chymosin recombinant analog in the prokaryotic expression system, and analysis of its several biochemical properties, Biochemistry (Moscow), 85, 781-791, https://doi.org/10.1134/S0006297920070068.

    Article  CAS  PubMed  Google Scholar 

  27. Belov, A. N., Koval, A. D., Pushkarev, V. A., Mironova, A. V., Shcherbakov, D. N., et al. (2022) The first experience of using domestic recombinant chymosin in the production of cheese with a low temperature of the second heating, Cheese Making Oil Making, 3, 28-32, https://doi.org/10.31515/2073-4018-2022-3-28-32.

    Article  Google Scholar 

  28. Engler, C., Kandzia, R., and Marillonnet, S. (2008) A one pot, one step, precision cloning method with high throughput capability, PLoS One, 3, e3647, https://doi.org/10.1371/journal.pone.0003647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Derouazi, M., Girard, P., Van Tilborgh, F., Iglesias, K., Muller, N., et al. (2004) Serum-free large-scale transient transfection of CHO cells, Biotechnol. Bioeng., 87, 537-545, https://doi.org/10.1002/bit.20161.

    Article  CAS  PubMed  Google Scholar 

  30. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.

    Article  CAS  PubMed  Google Scholar 

  31. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  32. Reinhart, D., Damjanovic, L., Kaisermayer, C., Sommeregger, W., Gili, A., et al. (2019) Bioprocessing of recombinant CHO-K1, CHO-DG44, and CHO-S: CHO expression hosts favor either mAb production or biomass synthesis, Biotechnol. J., 14, 1700686, https://doi.org/10.1002/biot.201700686.

    Article  CAS  Google Scholar 

  33. Akishev, Z., Abdullayeva, A., Mussakhmetov, A., Bekbayeva, A., Tursunbekova, A., et al. (2023) The obtaining of the recombinant camel chymosin by submerge fermentation in the pilot bioreactor, Eur. J. Appl. Biotechnol., 1, 45-55, https://doi.org/10.11134/btp.1.2023.4.

    Article  Google Scholar 

  34. Ersöz, F., and İnan, M. (2019) Large-scale production of yak (Bos grunniens) chymosin A in Pichia pastoris, Protein Express. Purif., 154, 126-133, https://doi.org/10.1016/j.pep.2018.10.007.

    Article  CAS  Google Scholar 

  35. Wang, N., Wang, K. Y., Li, G., Guo, W., and Liu, D. (2015) Expression and characterization of camel chymosin in Pichia pastoris, Protein Express. Purif., 111, 75-81, https://doi.org/10.1016/j.pep.2015.03.012.

    Article  CAS  Google Scholar 

  36. Bodie, E. A., Armstrong, G. L., Dunn-Coleman, N. S. (1994) Strain improvement of chymosin-producing strains of Aspergillus niger var. awamori using parasexual recombination, Enzyme Microb. Technol., 16, 376-382, https://doi.org/10.1016/0141-0229(94)90151-1.

    Article  CAS  PubMed  Google Scholar 

  37. Van den Brink, H. (J.) M., Petersen, S. G., Rahbek-Nielsen, H., Hellmuth, K., and Harboe, M. (2006) Increased production of chymosin by glycosylation, J. Biotechnol., 125, 304-310, https://doi.org/10.1016/j.jbiotec.2006.02.024.

    Article  CAS  PubMed  Google Scholar 

  38. Horne, D. S. (2002) Casein structure, self-assembly and gelation, Curr. Opin. Colloid Interf. Sci., 7, 456-461, https://doi.org/10.1016/S1359-0294(02)00082-1.

    Article  CAS  Google Scholar 

  39. Holt, C. (1992) Structure and stability of bovine casein micelles, Adv. Protein Chem., 43, 63-151, https://doi.org/10.1016/S0065-3233(08)60554-9.

    Article  CAS  PubMed  Google Scholar 

  40. Foltmann, B. (1992) Chymosin: a short review on foetal and neonatal gastric proteases, Scand. J. Clin. Lab. Invest., 52, 65-79, https://doi.org/10.1080/00365519209104656.

    Article  CAS  Google Scholar 

  41. Jensen, J. L., Mølgaard, A., Navarro Poulsen, J. C., Harboe, M. K., Simonsen, J. B., et al. (2013) Camel and bovine chymosin: the relationship between their structures and cheese-making properties, Acta Crystallogr. Sec. D Biol. Crystallogr., 69, 901-913, https://doi.org/10.1107/S0907444913003260.

    Article  CAS  Google Scholar 

  42. Fox, P. F., Guinee, T. P., Cogan, T. M., and McSweeney, P. L. H. (2016) Enzymatic coagulation of milk, in Fundamentals of Cheese Science, pp. 185-229, https://doi.org/10.1007/978-1-4899-7681-9_7.

  43. Costabel, L. M., Bergamini, C. V., Pozza, L., Cuffia, F., Candioti, M. C., and Hynes, E. (2015) Influence of chymosin type and curd scalding temperature on proteolysis of hard cooked cheeses, J. Dairy Res., 82, 375-384, https://doi.org/10.1017/S0022029915000175.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Agreement no. 075-15-2021-1355 dated October 12, 2021) as part of the implementation of certain activities of the Federal Scientific and Technical Program for the Development of Synchrotron and Neutron Research and Research Infrastructure for 2019-2027.

Author information

Authors and Affiliations

Authors

Contributions

Murashkin and Belenkaya wrote the manuscript; Bondar created the figures; Elchaninov and Shcherbakov edited the text of the article.

Corresponding author

Correspondence to Svetlana V. Belenkaya.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murashkin, D.E., Belenkaya, S.V., Bondar, A.A. et al. Analysis of Some Biochemical Properties of Recombinant Siberian Roe Deer (Capreolus pygargus) Chymosin Obtained in the Mammalian Cell Culture (CHO-K1). Biochemistry Moscow 88, 1284–1295 (2023). https://doi.org/10.1134/S0006297923090080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923090080

Keywords

Navigation