Skip to main content
Log in

Glutaredoxin 1 from Evolutionary Ancient Hydra: Characteristics of the Enzyme and Its Possible Functions in Cell

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Glutaredoxin (Grx) is an antioxidant redox protein that uses glutathione (GSH) as an electron donor. Grx plays a crucial role in various cellular processes, such as antioxidant defense, control of cellular redox state, redox control of transcription, reversible S-glutathionylation of specific proteins, apoptosis, cell differentiation, etc. In the current study, we have isolated and characterized dithiol glutaredoxin from Hydra vulgaris Ind-Pune (HvGrx1). Sequence analysis showed that HvGrx1 belongs to the Grx family with the classical Grx motif (CPYC). Phylogenetic analysis and homology modeling revealed that HvGrx1 is closely related to Grx2 from zebrafish. HvGrx1 gene was cloned and expressed in Escherichia coli cells; the purified protein had a molecular weight of 11.82 kDa. HvGrx1 efficiently reduced β-hydroxyethyl disulfide (HED) with the temperature optimum of 25°C and pH optimum 8.0. HvGrx1 was ubiquitously expressed in all body parts of Hydra. Expression of HvGrx1 mRNA and enzymatic activity of HvGrx1 were significantly upregulated post H2O2 treatment. When expressed in human cells, HvGrx1 protected the cells from oxidative stress and enhanced cell proliferation and migration. Although Hydra is a simple invertebrate, HvGrx1 is evolutionary closer to its homologs from higher vertebrates (similar to many other Hydra proteins).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

GSH:

glutathione

HvGrx1:

Hydra vulgaris glutaredoxin 1

References

  1. Martínez, D. E., Iñiguez, A. R., Percell, K. M., Willner, J. B., Signorovitch, J., and Campbell, R. D. (2010) Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences, Mol. Phylogenet. Evol., 57, 403-410, https://doi.org/10.1016/j.ympev.2010.06.016.

    Article  CAS  PubMed  Google Scholar 

  2. Bosch, T. C., Anton-Erxleben, F., Hemmrich, G., and Khalturin, K. (2010) The Hydra polyp: nothing but an active stem cell community, Dev. Growth Differ., 52, 15-25, https://doi.org/10.1111/j.1440-169X.2009.01143.x.

    Article  CAS  PubMed  Google Scholar 

  3. Schaible, R., Sussman, M., and Kramer, B. H. (2014) Aging and potential for self-renewal: hydra living in the age of aging – a mini-review, Gerontology, 60, 548-556, https://doi.org/10.1159/000360397.

    Article  PubMed  Google Scholar 

  4. Martínez, D. E. (1998) Mortality patterns suggest lack of senescence in hydra, Exp. Gerontol., 33, 217-225, https://doi.org/10.1016/s0531-5565(97)00113-7.

    Article  PubMed  Google Scholar 

  5. Martínez, D. E., and Bridge, D. (2012) Hydra, the everlasting embryo, confronts aging, Int. J. Dev. Biol., 56, 479-487, https://doi.org/10.1387/ijdb.113461dm.

    Article  CAS  PubMed  Google Scholar 

  6. Hemmrich, G., Khalturin, K., Boehm, A.-M., Puchert, M., Anton-Erxleben, F., Wittlieb, J., Klostermeier, U. C., Rosenstiel, P., Oberg, H.-H., Domazet-Lošo, T., Sugimoto, T., Niwa, H., and Bosch, T. C. G. (2012) Molecular signatures of the three stem cell lineages in hydra and the emergence of stem cell function at the base of multicellularity, Mol. Biol. Evol., 29, 3267-3280, https://doi.org/10.1093/molbev/mss134.

    Article  CAS  PubMed  Google Scholar 

  7. Boehm, A. M., Khalturin, K., Anton-Erxleben, F., Hemmrich, G., Klostermeier, U. C., Lopez-Quintero, J. A., Oberg, H. H., Puchert, M., Rosenstiel, P., Wittlieb, J., and Bosch, T. C. (2012) FoxO is a critical regulator of stem cell maintenance in immortal Hydra, Proc. Natl. Acad. Sci. USA, 109, 19697-19702, https://doi.org/10.1073/pnas.1209714109.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Klotz, L. O., Sánchez-Ramos, C., Prieto-Arroyo, I., Urbánek, P., Steinbrenner, H., and Monsalve, M. (2015) Redox regulation of FoxO transcription factors, Redox Biol., 6, 51-72, https://doi.org/10.1016/j.redox.2015.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dash, B., Metz, R., Huebner, H. J., Porter, W., and Phillips, T. D. (2006) Molecular characterization of phospholipid hydroperoxide glutathione peroxidases from Hydra vulgaris, Gene, 381, 1-12, https://doi.org/10.1016/j.gene.2006.04.026.

    Article  CAS  PubMed  Google Scholar 

  10. Dash, B., Metz, R., Huebner, H. J., Porter, W., and Phillips, T. D. (2007) Molecular characterization of two superoxide dismutases from Hydra vulgaris, Gene, 387, 93-108, https://doi.org/10.1016/j.gene.2006.08.020.

    Article  CAS  PubMed  Google Scholar 

  11. Dash, B., and Phillips, T. D. (2012) Molecular characterization of a catalase from Hydra vulgaris, Gene, 501, 144-152, https://doi.org/10.1016/j.gene.2012.04.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perween, N., Pekhale, K., Haval, G., Mittal, S., Ghaskadbi, S., and Ghaskadbi, S. S. (2022) Cloning and characterization of Thioredoxin 1 from the Cnidarian Hydra, J. Biochem., 171, 41-51, https://doi.org/10.1093/jb/mvab092.

    Article  CAS  PubMed  Google Scholar 

  13. Holmgren, A., Johansson, C., Berndt, C., Lönn, M. E., Hudemann, C., and Lillig, C. H. (2005) Thiol redox control via thioredoxin and glutaredoxin systems, Biochem. Soc. Trans., 33, 1375-1377, https://doi.org/10.1042/bst20051375.

    Article  CAS  PubMed  Google Scholar 

  14. Wells, W. W., Xu, D. P., Yang, Y. F., and Rocque, P. A. (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity, J. Biol. Chem., 265, 15361-15364, https://doi.org/10.1016/S0021-9258(18)55401-6.

    Article  CAS  PubMed  Google Scholar 

  15. Lillig, C. H., Berndt, C., and Holmgren, A. (2008) Glutaredoxin systems, Biochim. Biophys. Acta, 1780, 1304-1317, https://doi.org/10.1016/j.bbagen.2008.06.003.

    Article  CAS  PubMed  Google Scholar 

  16. Couturier, J., Jacquot, J. P., and Rouhier, N. (2013) Toward a refined classification of class I dithiol glutaredoxins from poplar: biochemical basis for the definition of two subclasses, Front. Plant Sci., 4, 518, https://doi.org/10.3389/fpls.2013.00518.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Keselman, A., Pulak, R. N., Moyal, K., and Isakov, N. (2011) PICOT: A multidomain protein with multiple functions, ISRN Immunol., 2011, 426095, https://doi.org/10.5402/2011/426095.

    Article  CAS  Google Scholar 

  18. Herrero, E., and de la Torre-Ruiz, M. A. (2007) Monothiol glutaredoxins: a common domain for multiple functions, Cell. Mol. Life Sci., 64, 1518-1530, https://doi.org/10.1007/s00018-007-6554-8.

    Article  CAS  PubMed  Google Scholar 

  19. Bräutigam, L., Jensen, L. D., Poschmann, G., Nyström, S., Bannenberg, S., Dreij, K., Lepka, K., Prozorovski, T., Montano, S. J., Aktas, O., Uhlén, P., Stühler, K., Cao, Y., Holmgren, A., and Berndt, C. (2013) Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1, Proc. Natl. Acad. Sci. USA, 110, 20057-20062, https://doi.org/10.1073/pnas.1313753110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fernandes, A. P., and Holmgren, A. (2004) Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system, Antioxid. Redox Signal., 6, 63-74, https://doi.org/10.1089/152308604771978354.

    Article  CAS  PubMed  Google Scholar 

  21. Jeong, D., Kim, J. M., Cha, H., Oh, J. G., Park, J., Yun, S. H., Ju, E. S., Jeon, E. S., Hajjar, R. J., and Park, W. J. (2008) PICOT attenuates cardiac hypertrophy by disrupting calcineurin-NFAT signaling, Circ. Res., 102, 711-719, https://doi.org/10.1161/circresaha.107.165985.

    Article  CAS  PubMed  Google Scholar 

  22. Madusanka, R. K., Tharuka, M. D. N., Liyanage, D. S., Sirisena, D., and Lee, J. (2020) Role of rockfish (Sebastes schlegelii) glutaredoxin 1 in innate immunity, and alleviation of cellular oxidative stress: Insights into localization, molecular characteristics, transcription, and function, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 243-244, 110432, https://doi.org/10.1016/j.cbpb.2020.110432.

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J., Boja, E. S., Tan, W., Tekle, E., Fales, H. M., English, S., Mieyal, J. J., and Chock, P. B. (2001) Reversible glutathionylation regulates actin polymerization in A431 cells, J. Biol. Chem., 276, 47763-47766, https://doi.org/10.1074/jbc.C100415200.

    Article  CAS  PubMed  Google Scholar 

  24. Reddy, P. C., Barve, A., and Ghaskadbi, S. (2011) Description and phylogenetic characterization of common hydra from India, Curr. Sci., 101, 736-738.

    Google Scholar 

  25. Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., and Madden, T. L. (2008) NCBI BLAST: a better web interface, Nucleic Acids Res., 36, W5-W9, https://doi.org/10.1093/nar/gkn201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms, Mol. Biol. Evol., 35, 1547-1549, https://doi.org/10.1093/molbev/msy096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S. (2004) Improved prediction of signal peptides: SignalP 3.0, J. Mol. Biol., 340, 783-795, https://doi.org/10.1016/j.jmb.2004.05.028.

    Article  CAS  PubMed  Google Scholar 

  28. Almagro Armenteros, J. J., Salvatore, M., Emanuelsson, O., Winther, O., von Heijne, G., Elofsson, A., and Nielsen, H. (2019) Detecting sequence signals in targeting peptides using deep learning, Life Sci. Alliance, 2, e201900429, https://doi.org/10.26508/lsa.201900429.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rzhetsky, A., and Nei, M. (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference, Mol. Biol. Evol., 10, 1073-1095, https://doi.org/10.1093/oxfordjournals.molbev.a040056.

    Article  CAS  PubMed  Google Scholar 

  30. Kruger, N. J. (2009) The Bradford method for protein quantitation, in The Protein Protocols Handbook, pp. 17-24.

  31. Holmgren, A., and Aslund, F. (1995) Glutaredoxin, in Methods in Enzymology, Academic Press, pp. 283-292.

  32. Sadhu, S. S., Callegari, E., Zhao, Y., Guan, X., and Seefeldt, T. (2013) Evaluation of a dithiocarbamate derivative as an inhibitor of human glutaredoxin-1, J. Enzyme Inhib. Med. Chem., 28, 456-462, https://doi.org/10.3109/14756366.2011.649267.

    Article  CAS  PubMed  Google Scholar 

  33. Omeka, W. K. M., Liyanage, D. S., Yang, H., and Lee, J. (2019) Glutaredoxin 2 from big belly seahorse (Hippocampus abdominalis) and its potential involvement in cellular redox homeostasis and host immune responses, Fish Shellfish Immunol., 95, 411-421, https://doi.org/10.1016/j.fsi.2019.09.071.

    Article  CAS  PubMed  Google Scholar 

  34. Ken, C. F., Chen, I. J., Lin, C. T., Liu, S. M., Wen, L., and Lin, C. T. (2011) Monothiol glutaredoxin cDNA from Taiwanofungus camphorata: a novel CGFS-type glutaredoxin possessing glutathione reductase activity, J. Agric. Food Chem., 59, 3828-3835, https://doi.org/10.1021/jf1048113.

    Article  CAS  PubMed  Google Scholar 

  35. Martinez, D. E., Dirksen, M. L., Bode, P. M., Jamrich, M., Steele, R. E., and Bode, H. R. (1997) Budhead, a fork head/HNF-3 homologue, is expressed during axis formation and head specification in hydra, Dev. Biol., 192, 523-536, https://doi.org/10.1006/dbio.1997.8715.

    Article  CAS  PubMed  Google Scholar 

  36. Gupta, A., Sripa, B., and Tripathi, T. (2017) Purification and characterization of two-domain glutaredoxin in the parasitic helminth Fasciola gigantica, Parasitol. Int., 66, 432-435, https://doi.org/10.1016/j.parint.2016.05.005.

    Article  CAS  PubMed  Google Scholar 

  37. Ströher, E., and Millar, A. H. (2012) The biological roles of glutaredoxins, Biochem. J., 446, 333-348, https://doi.org/10.1042/bj20112131.

    Article  PubMed  Google Scholar 

  38. Arnér, E. S., and Holmgren, A. (2000) Physiological functions of thioredoxin and thioredoxin reductase, Eur. J. Biochem., 267, 6102-6109, https://doi.org/10.1046/j.1432-1327.2000.01701.x.

    Article  PubMed  Google Scholar 

  39. Berndt, C., Poschmann, G., Stühler, K., Holmgren, A., and Bräutigam, L. (2014) Zebrafish heart development is regulated via glutaredoxin 2 dependent migration and survival of neural crest cells, Redox Biol., 2, 673-678, https://doi.org/10.1016/j.redox.2014.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hashemy, S. I., Johansson, C., Berndt, C., Lillig, C. H., and Holmgren, A. (2007) Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins: effects on structure and activity, J. Biol. Chem., 282, 14428-14436, https://doi.org/10.1074/jbc.M700927200.

    Article  CAS  PubMed  Google Scholar 

  41. Lundberg, M., Johansson, C., Chandra, J., Enoksson, M., Jacobsson, G., Ljung, J., Johansson, M., and Holmgren, A. (2001) Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms, J. Biol. Chem., 276, 26269-26275, https://doi.org/10.1074/jbc.M011605200.

    Article  CAS  PubMed  Google Scholar 

  42. Ceylan, S., Seidel, V., Ziebart, N., Berndt, C., Dirdjaja, N., and Krauth-Siegel, R. L. (2010) The dithiol glutaredoxins of african trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism, J. Biol. Chem., 285, 35224-35237, https://doi.org/10.1074/jbc.M110.165860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fitzgerald, L. A., Zhang, Y., Lewis, G., and Van Etten, J. L. (2009) Characterization of a monothiol glutaredoxin encoded by Chlorella virus PBCV-1, Virus Genes, 39, 418-426, https://doi.org/10.1007/s11262-009-0392-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gallogly, M. M., Starke, D. W., Leonberg, A. K., Ospina, S. M., and Mieyal, J. J. (2008) Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles, Biochemistry, 47, 11144-11157, https://doi.org/10.1021/bi800966v.

    Article  CAS  PubMed  Google Scholar 

  45. Sa, J. H., Kim, K., and Lim, C. J. (1997) Purification and characterization of glutaredoxin from Cryptococcus neoformans, Mol. Cells, 7, 655-660.

    CAS  PubMed  Google Scholar 

  46. Aslund, F., Zheng, M., Beckwith, J., and Storz, G. (1999) Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status, Proc. Natl. Acad. Sci. USA, 96, 6161-6165, https://doi.org/10.1073/pnas.96.11.6161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Löfgren, S., Fernando, M. R., Xing, K. Y., Wang, Y., Kuszynski, C. A., Ho, Y. S., and Lou, M. F. (2008) Effect of thioltransferase (glutaredoxin) deletion on cellular sensitivity to oxidative stress and cell proliferation in lens epithelial cells of thioltransferase knockout mouse, Invest. Ophthalmol. Vis. Sci., 49, 4497-4505, https://doi.org/10.1167/iovs.07-1404.

    Article  PubMed  Google Scholar 

  48. Mollbrink, A., Jawad, R., Vlamis-Gardikas, A., Edenvik, P., Isaksson, B., Danielsson, O., Stål, P., and Fernandes, A. P. (2014) Expression of thioredoxins and glutaredoxins in human hepatocellular carcinoma: correlation to cell proliferation, tumor size and metabolic syndrome, Int. J. Immunopathol. Pharmacol., 27, 169-183, https://doi.org/10.1177/039463201402700204.

    Article  CAS  PubMed  Google Scholar 

  49. Liu, X., Jann, J., Xavier, C., and Wu, H. (2015) Glutaredoxin 1 (Grx1) protects human retinal pigment epithelial cells from oxidative damage by preventing AKT glutathionylation, Invest. Ophthalmol. Vis. Sci., 56, 2821-2832, https://doi.org/10.1167/iovs.14-15876.

    Article  CAS  PubMed  Google Scholar 

  50. Luikenhuis, S., Perrone, G., Dawes, I. W., and Grant, C. M. (1998) The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species, Mol. Biol. Cell, 9, 1081-1091, https://doi.org/10.1091/mbc.9.5.1081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gellert, M., Richter, E., Mostertz, J., Kantz, L., Masur, K., Hanschmann, E. M., Ribback, S., Kroeger, N., Schaeffeler, E., Winter, S., Hochgräfe, F., Schwab, M., and Lillig, C. H. (2020) The cytosolic isoform of glutaredoxin 2 promotes cell migration and invasion, Biochim. Biophys. Acta Gen. Subj., 1864, 129599, https://doi.org/10.1016/j.bbagen.2020.129599.

    Article  CAS  PubMed  Google Scholar 

  52. Li, B., Chen, M., Lu, M., Xin-Xiang, J., Meng-Xiong, P., and Jun-Wu, M. (2018) Glutaredoxin 3 promotes migration and invasion via the Notch signalling pathway in oral squamous cell carcinoma, Free Radic. Res., 52, 390-401, https://doi.org/10.1080/10715762.2018.1435871.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Shekhar Mande (National Centre for Cell Science, Pune) and Ms. Sapna Sugandhi for their help and advice in protein purification. NP, KP, and GB acknowledge the financial support through the fellowships from the Council for Scientific and Industrial Research (CSIR), New Delhi. SG is an Emeritus Scientist of the Council of Scientific & Industrial Research (CSIR), New Delhi.

Funding

SSG sincerely acknowledges the Department of Science and Technology for Promotion of University Research and Scientific Excellence (DST-PURSE), Government of India [F-5-2/2005(SAP-II)], University Grant Commission-Centre for Advance Studies (UGC-CAS) (grant GOI-A-670 to the Department of Zoology), Savitribai Phule Pune University (SPPU) for funding. NP and SPM gratefully acknowledge the Project-based Innovative Research Mentorship Program (ASPIRE) of SPPU.

Author information

Authors and Affiliations

Authors

Contributions

NP, SG, and SSG conceived the idea. NP, KP, GH, GB, and SPM performed experiments and analyzed the data. NP, SSG wrote the manuscript. NP, KP, GH, SPM, SG, and SSG reviewed the final draft of the manuscript. SSG supervised the study.

Corresponding author

Correspondence to Saroj S. Ghaskadbi.

Ethics declarations

The authors declare no conflicts of interest. This article does not contain any studies involving human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perween, N., Pekhale, K., Haval, G. et al. Glutaredoxin 1 from Evolutionary Ancient Hydra: Characteristics of the Enzyme and Its Possible Functions in Cell. Biochemistry Moscow 88, 667–678 (2023). https://doi.org/10.1134/S0006297923050097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923050097

Keywords

Navigation