Skip to main content
Log in

The Role of the Adapter Protein Anks1a in the Regulation of Breast Cancer Cell Motility

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Epithelial–mesenchymal transition (EMT) is a critical step in tumor progression that leads to the acquisition by cancer cells the capacity for migration using the mesenchymal motility mode regulated by the Rac→WAVE→Arp2/3 signaling pathway. Earlier it was shown that proteins interacting with Rac can regulate mesenchymal migration and thus determine the metastatic potential of the cells. The search for new regulators of cell migration is an important theoretical and practical task. The adaptor protein Anks1a is one of the proteins interacting with Rac, whose expression is altered in many types of tumors. The aim of this study was to find whether Anks1a affects the migration of cancer cells and to identify the mechanism underlying this effect. It was suggested that Anks1a can influence cancer cell migration either as a Rac1 effector or by activating human epidermal growth factor receptor 2 (HER2) exchange. We investigated how upregulation and inhibition of Anks1a expression affected migration of breast cancer cells with different HER2 status. Anks1a was shown to interact with the activated form of Rac1. In the MDA-MB-231 cells (triple negative cancer), which lack HER2, Anks1a accumulated at the active cell edge, which is characterized by enrichment with active Rac1, whereas no such accumulation was observed in the HER2-overexpressing SK-BR-3 cells. Downregulation of the ANKS1a expression with esiRNA had almost no effect on the cancer cell motility, except a slight increase in the average migration rate of MDA-MB-231 cells. Among three cell lines tested, overexpression of Anks1a increased the migration rate of HER2-overexpressng SK-BR-3 cells only. We showed that Anks1a is an effector of activated Rac1, but its influence on the cell migration in this capacity was minimal, at least in the studied breast cancer cells. Anks1a affected the motility of breast cancer cells due to its involvement in the EGF receptor exchange.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

Anks1a:

ankyrin repeat and sterile alpha motif domain containing 1A

EGF:

epidermal growth factor

HER2:

human epidermal growth factor receptor 2

RTK:

receptor tyrosine kinase

References

  1. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation, Cell, 144, 646-674, https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  Google Scholar 

  2. Svitkina, T. (2018) The actin cytoskeleton and actin-based motility, Cold Spring Harb. Perspect. Biol., 10, a018267, https://doi.org/10.1101/cshperspect.a018267.

    Article  CAS  Google Scholar 

  3. Bonello, T. T., Stehn, J. R., and Gunning, P. W. (2009) New approaches to targeting the actin cytoskeleton for chemotherapy, Future Med. Chem., 1, 1311-1331, https://doi.org/10.4155/fmc.09.99.

    Article  CAS  Google Scholar 

  4. Raftopoulou, M., and Hall, A. (2004) Cell migration: Rho GTPases lead the way, Dev. Biol., 265, 23-32, https://doi.org/10.1016/j.ydbio.2003.06.003.

    Article  CAS  Google Scholar 

  5. Hall, A., and Nobes, C. D. (2000) Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton, Philos. Trans. R. Soc. Lond. B Biol. Sci., 355, 965-970, https://doi.org/10.1098/rstb.2000.0632.

    Article  CAS  Google Scholar 

  6. Krugmann, S., Jordens, I., Gevaert, K., Driessens, M., Vandekerckhove, J., and Hall, A. (2001) Cdc42 induces filopodia by promoting the formation of an IRSp53: Mena complex, Curr. Biol., 11, 1645-1655, https://doi.org/10.1016/s0960-9822(01)00506-1.

    Article  CAS  Google Scholar 

  7. Charras, G., and Paluch, E. (2008) Blebs lead the way: how to migrate without lamellipodia, Nat. Rev. Mol. Cell Biol., 9, 730-736, https://doi.org/10.1038/nrm2453.

    Article  CAS  Google Scholar 

  8. Wang, W., Wyckoff, J. B., Frohlich, V. C., Oleynikov, Y., Hüttelmaier, S., et al. (2002) Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling, Cancer Res., 62, 6278-6288.

    CAS  Google Scholar 

  9. Wang, W., Wyckoff, J. B., Goswami, S., Wang, Y., Sidani, M., et al. (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors, Cancer Res., 67, 3505-3511, https://doi.org/10.1158/0008-5472.CAN-06-3714.

    Article  CAS  Google Scholar 

  10. Pankov, R., Endo, Y., Even-Ram, S., Araki, M., Clark, K., Cukierman, E., Matsumoto, K., and Yamada, K. M. (2005) A Rac switch regulates random versus directionally persistent cell migration, J. Cell Biol., 170, 793-802, https://doi.org/10.1083/jcb.200503152.

    Article  CAS  Google Scholar 

  11. Zhou, K., Rao, J., Zhou, Z. H., Yao, X. H., Wu, F., Yang, J., Yang, L., Zhang, X., Cui, Y.-H., Bian, X.-W., Shi, Yu, and Ping, Yi-F. (2018) RAC1-GTP promotes epithelial-mesenchymal transition and invasion of colorectal cancer by activation of STAT3, Lab. Invest., 98, 989-998, https://doi.org/10.1038/s41374-018-0071-2.

    Article  CAS  Google Scholar 

  12. Kurisu, S., Suetsugu, S., Yamazaki, D., Yamaguchi, H., and Takenawa, T. (2005) Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells, Oncogene, 24, 1309-1319, https://doi.org/10.1038/sj.onc.1208177.

    Article  CAS  Google Scholar 

  13. Rana, P. S., Alkrekshi, A., Wang, W., Markovic, V., and Sossey-Alaoui, K. (2021) The role of WAVE2 signaling in cancer, Biomedicines, 9, 1217, https://doi.org/10.3390/biomedicines9091217.

    Article  CAS  Google Scholar 

  14. Taniuchi, K., Yawata, T., Tsuboi, M., Ueba, T., and Saibara, T. (2019) Efficient delivery of small interfering RNAs targeting particular mRNAs into pancreatic cancer cells inhibits invasiveness and metastasis of pancreatic tumors, Oncotarget, 10, 2869-2886, https://doi.org/10.18632/oncotarget.26880.

    Article  Google Scholar 

  15. Takahashi, K., and Suzuki, K. (2011) WAVE2, N-WASP, and Mena facilitate cell invasion via phosphatidylinositol 3-kinase-dependent local accumulation of actin filaments, J. Cell Biochem., 112, 3421-3429, https://doi.org/10.1002/jcb.23276.

    Article  CAS  Google Scholar 

  16. Wang, W., Eddy, R., and Condeelis, J. (2007) The cofilin pathway in breast cancer invasion and metastasis, Nat. Rev. Cancer, 7, 429-440, https://doi.org/10.1038/nrc214.

    Article  CAS  Google Scholar 

  17. Sinha, P., Hütter, G., Köttgen, E., Dietel, M., Schadendorf, D., and Kage, H. (1999) Increased expression of epidermal fatty acid binding protein, cofilin, and 14-3-3-sigma (stratifin) detected by two-dimensional gel electrophoresis, mass spectrometry and microsequencing of drug-resistant human adenocarcinoma of the pancreas, Electrophoresis, 20, 2952-2960, https://doi.org/10.1002/(SICI)1522-2683(19991001)20:14<2952::AID-ELPS2952>3.0.CO;2-H.

    Article  CAS  Google Scholar 

  18. Gunnersen, J. M., Spirkoska, V., Smith, P. E., Danks, R. A., and Tan, S. S. (2000) Growth and migration markers of rat C6 glioma cells identified by serial analysis of gene expression, Glia, 32, 146-154, https://doi.org/10.1002/1098-1136(200011)32:2<146::AID-GLIA40>3.0.CO;2-3.

    Article  CAS  Google Scholar 

  19. Davila, M., Frost, A. R., Grizzle, W. E., and Chakrabarti, R. (2003) LIM kinase 1 is essential for the invasive growth of prostate epithelial cells: implications in prostate cancer, J. Biol. Chem., 278, 36868-36875, https://doi.org/10.1074/jbc.M306196200.

    Article  CAS  Google Scholar 

  20. Yoshioka, K., Foletta, V., Bernard, O., and Itoh, K. (2003) A role for LIM kinase in cancer invasion, Proc. Natl. Acad. Sci. USA, 100, 7247-7252, https://doi.org/10.1073/pnas.1232344100.

    Article  CAS  Google Scholar 

  21. Pandey, A., Blagoev, B., Kratchmarova, I., Fernandez, M., Nielsen, M., Kristiansen, T. Z., Ohara, O., Podtelejnikov, A. V., Roche, S., Lodish, H. F., and Mann, M. (2002) Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases, Oncogene, 21, 8029-8036, https://doi.org/10.1038/sj.onc.1205988.

    Article  CAS  Google Scholar 

  22. Shin, J., Gu, C., Park, E., and Park, S. (2007) Identification of phosphotyrosine binding domain-containing proteins as novel downstream targets of the EphA8 signaling function, Mol. Cell Biol., 27, 8113-8126, https://doi.org/10.1128/MCB.00794-07.

    Article  CAS  Google Scholar 

  23. Casaletto, J. B., and McClatchey, A. I. (2012) Spatial regulation of receptor tyrosine kinases in development and cancer, Nat. Rev. Cancer, 12, 387-400, https://doi.org/10.1038/nrc3277.

    Article  CAS  Google Scholar 

  24. Lemmon, M. A., and Schlessinger, J. (2010) Cell signaling by receptor tyrosine kinases, Cell, 141, 1117-1134, https://doi.org/10.1016/j.cell.2010.06.011.

    Article  CAS  Google Scholar 

  25. Park, S., Lee, H., Lee, J., Park, E., and Park, S. (2019) Ependymal cells require Anks1a for their proper development, Mol. Cells, 42, 245-251, https://doi.org/10.14348/molcells.2018.0432.

    Article  CAS  Google Scholar 

  26. Lee, Y., Yoon, K. A., Joo, J., Lee, D., Bae, K., Han, Ji-Y., and Lee, J.-S. (2013) Prognostic implications of genetic variants in advanced non-small cell lung cancer: a genome-wide association study, Carcinogenesis, 34, 307-313, https://doi.org/10.1093/carcin/bgs356.

    Article  CAS  Google Scholar 

  27. Lee, H., Noh, H., Mun, J., Gu, C., Sever, S., and Park, S. (2016) Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis, Nat. Commun., 7, 12799, https://doi.org/10.1038/ncomms12799.

    Article  CAS  Google Scholar 

  28. Tong, J., Sydorskyy, Y., St-Germain, J. R., Taylor, P., Tsao, M. S., and Moran, M. F. (2013) Odin (ANKS1A) modulates EGF receptor recycling and stability, PLoS One, 8, e64817, https://doi.org/10.1371/journal.pone.006481.

    Article  CAS  Google Scholar 

  29. Kristiansen, T. Z., Nielsen, M. M., Blagoev, B., Pandey, A., and Mann, M. (2004) Mouse embryonic fibroblasts derived from Odin deficient mice display a hyperproliiferative phenotype, DNA Res., 11, 285-292.

    CAS  Google Scholar 

  30. Sladitschek, H. L., and Neveu, P. A. (2015) MXS-chaining: a highly efficient cloning platform for imaging and flow cytometry approaches in mammalian systems, PLoS One, 10, e0124958, https://doi.org/10.1371/journal.pone.0124958.

    Article  CAS  Google Scholar 

  31. Molinie, N., Rubtsova, S. N., Fokin, A., Visweshwaran, S. P., Rocques, N., Polesskaya, A., Schnitzler, A., Vacher, S., Denisov, E. V., Tashireva, L. A., Perelmuter, V. M., Cherdyntseva, N. V., Bièche, I., and Gautreau, A. M. (2019) Cortical branched actin determines cell cycle progression, Cell Res., 29, 432-445, https://doi.org/10.1038/s41422-019-0160-9.

    Article  CAS  Google Scholar 

  32. Gorelik, R., and Gautreau, A. (2014) Quantitative and unbiased analysis of directional persistence in cell migration, Nat. Protoc., 9, 1931-1943, https://doi.org/10.1038/nprot.2014.131.

    Article  CAS  Google Scholar 

  33. Holliday, D. L., and Speirs, V. (2011) Choosing the right cell line for breast cancer research, Breast Cancer Res., 13, 215, https://doi.org/10.1186/bcr2889.

    Article  Google Scholar 

  34. Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., Slabaugh, S., and Hahn, K. N. (2000) Localized Rac activation dynamics visualized in living cells, Science, 290, 333-337, https://doi.org/10.1126/science.290.5490.333.

    Article  CAS  Google Scholar 

  35. Mehidi, A., Rossier, O., Schaks, M., Chazeau, A., Binamé, F., Remorino, A., Coppey, M., Karatas, Z., Sibarita, J.-P., Rottner, K., Moreau, V., and Giannone, G. (2019) Transient activations of Rac1 at the lamellipodium tip trigger membrane protrusion, Curr. Biol., 29, 2852-2866.e5, https://doi.org/10.1016/j.cub.2019.07.035.

    Article  CAS  Google Scholar 

  36. Itoh, R. E., Kurokawa, K., Ohba, Y., Yoshizaki, H., Mochizuki, N., and Matsuda, M. (2002) Activation of rac and cdc42 video imaged by fluorescent resonance energy transfer-based single-molecule probes in the membrane of living cells, Mol. Cell Biol., 22, 6582-6591, https://doi.org/10.1128/MCB.22.18.6582-6591.2002.

    Article  CAS  Google Scholar 

  37. Steffen, A., Ladwein, M., Dimchev, G. A., Hein, A., Schwenkmezger, L., Arens, S., Ladwein, K. I., Holleboom, J. M., Schur, F., Small, J. V., Schwarz, J., Gerhard, R., Faix, J., Stradal, T. E. B., Brakebusch, C., and Rottner, K. (2013) Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation, J. Cell Sci., 126, 4572-4588, https://doi.org/10.1242/jcs.118232.

    Article  CAS  Google Scholar 

  38. Weiss-Haljiti, C., Pasquali, C., Ji, H., Gillieron, C., Chabert, C., Curchod, M. L., Hirsch, E., Ridley, A. J., van Huijsduijnen, R. H., Camps, M., and Rommel, C. (2004) Involvement of phosphoinositide 3-kinase gamma, Rac, and PAK signaling in chemokine-induced macrophage migration, J. Biol. Chem., 279, 43273-43284, https://doi.org/10.1074/jbc.M402924200.

    Article  CAS  Google Scholar 

Download references

Funding

This study was conducted within the framework of the International Associated Laboratory (LIA) research project “Novel machineries controlling cell migration and their role in cancer progression” (MIG MAC) and supported by the Russian Foundation for Basic Research (project no. 18-54-16006 to A. Y. A).

Author information

Authors and Affiliations

Authors

Contributions

A. Y. Alexandrova and A. M. Gautreau developed the concept and supervised the study; A. O. Zholudeva, M. E. Lomakina, E. A. Orlova, Y. Wang, A. Fokin, and A. Polesskaya performed the experiments; A. Y. Alexandrova, A. M. Gautreau, A. O. Zholudeva, M. E. Lomakina, A. Fokin, A. Polesskaya discussed the results; A. Y. Alexandrova, A. O. Zholudeva, M. E. Lomakina, A. Fokin wrote and edited the text.

Corresponding author

Correspondence to Antonina Y. Alexandrova.

Ethics declarations

The authors declare no conflict of interest. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zholudeva, A.O., Lomakina, M.E., Orlova, E.A. et al. The Role of the Adapter Protein Anks1a in the Regulation of Breast Cancer Cell Motility. Biochemistry Moscow 87, 1651–1661 (2022). https://doi.org/10.1134/S0006297922120203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922120203

Keywords

Navigation