Skip to main content
Log in

Sodium Ions as Regulators of Transcription in Mammalian Cells

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The maintenance of an uneven distribution of Na+ and K+ ions between the cytoplasm and extracellular medium is the basis for the functioning of any animal cell. Changes in the intracellular ratio of these cations occur in response to numerous stimuli and are important for the cell activity regulation. Numerous experimental data have shown that gene transcription in mammalian cells can be regulated by changes in the intracellular [Na+]i/[K+]i ratio. Here, we discuss possible mechanisms of such regulation in various cell types, with special attention to the [Ca2+]-independent signaling pathways that suggest the presence of an intracellular sensor of monovalent cations. As such sensor, we propose the secondary structures of nucleic acids called G-quadruplexes. They are widely represented in mammalian genomes and are often found in the promoters of genes encoding transcription factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CaMKI-IV:

Ca2+/calmodulin-dependent protein kinases I-IV

cAMP:

cyclic adenosine-3′,5′-monophosphate

Cd68:

macrophage antigen CD68

CRE:

cAMP response element

Fos:

Fos subunit gene of transcription activator factor 1 (AP-1)

HeLa cells:

human cervical carcinoma cells

Ier2, Ier3, Ier5:

immediate early response genes 2, 3, 5

Il6:

interleukin 6 gene

Jun:

Jun subunit gene of transcription activating factor 1 (AP-1)

Ptgs2:

prostaglandin-endoperoxide synthase 2 (cyclooxygenase 2) gene

References

  1. Verkhratsky, A., Parpura, V., Vardjan, N., and Zorec, R. (2019) In Neuroglia in Neurodegenerative Diseases (Verkhratsky, A., Ho, M. S., Zorec, R., Parpura, V., eds) Springer, Singapore, pp. 45-91.

  2. Harrison, S. M., McCall, E., and Boyett, M. R. (1992) The relationship between contraction and intracellular sodium in rat and guinea-pig ventricular myocytes, J. Physiol., 449, 517-550, https://doi.org/10.1113/jphysiol.1992.sp019100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Despa, S., Islam, M. A., Pogwizd, S. M., and Bers, D. M. (2002) Intracellular [Na+] and Na+ pump rate in rat and rabbit ventricular myocytes, J. Physiology, 539, 133-143, https://doi.org/10.1113/jphysiol.2001.012940.

    Article  CAS  Google Scholar 

  4. Reynolds, R. M., Padfield, P. L., and Seckl, J. R. (2006) Disorders of sodium balance, BMJ, 332, 702-705, https://doi.org/10.1136/bmj.332.7543.702.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pirkmajer, S., and Chibalin, A. V. (2016) Na,K-ATPase regulation in skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 311, E1-E31, https://doi.org/10.1152/ajpendo.00539.2015.

    Article  PubMed  Google Scholar 

  6. Skou, J. C. (1965) Enzymatic basis for active transport of Na+ and K+ across cell membrane, Physiol. Rev., 45, 596-618, https://doi.org/10.1152/physrev.1965.45.3.596.

    Article  CAS  PubMed  Google Scholar 

  7. Clausen, T. (2003) Na+-K+ pump regulation and skeletal muscle contractility, Physiol. Rev., 83, 1269-1324, https://doi.org/10.1152/physrev.00011.2003.

    Article  CAS  PubMed  Google Scholar 

  8. Clausen, T. (2013) Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: Functional significance, J. Gen. Physiol., 142, 327-345, https://doi.org/10.1085/jgp.201310980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pieske, B., Maier, L. S., Piacentino, V., Weisser, J., Hasenfuss, G., et al. (2002) Rate dependence of [Na+]i and contractility in nonfailing and failing human myocardium, Circulation, 106, 447-453, https://doi.org/10.1161/01.CIR.0000023042.50192.F4.

    Article  CAS  PubMed  Google Scholar 

  10. Despa, S., Islam, M. A., Weber, C. R., Pogwizd, S. M., and Bers, D. M. (2002) Intracellular Na+ concentration is elevated in heart failure but Na/K pump function is unchanged, Circulation, 105, 2543-2548, https://doi.org/10.1161/01.CIR.0000016701.85760.97.

    Article  CAS  PubMed  Google Scholar 

  11. Pogwizd, S. M., Sipido, K. R., Verdonck, F., and Bers, D. M. (2003) Intracellular Na in animal models of hypertrophy and heart failure: contractile function and arrhythmogenesis, Cardiovasc. Res., 57, 887-896, https://doi.org/10.1016/S0008-6363(02)00735-6.

    Article  CAS  PubMed  Google Scholar 

  12. Harris, D. A., and Das, A. M. (1991) Control of mitochondrial ATP synthesis in the heart, Biochem. J., 280, 561-573, https://doi.org/10.1042/bj2800561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Balaban, R. S. (2002) Cardiac energy metabolism homeostasis: role of cytosolic calcium, J. Mol. Cell Cardiol., 34, 1259-1271, https://doi.org/10.1006/jmcc.2002.2082.

    Article  CAS  PubMed  Google Scholar 

  14. Petrushanko, I. Y., Yakushev, S., Mitkevich, V. A., Kamanina, Y. V., Ziganshin, R. H., et al. (2012) S-glutathionylation of the Na,K-ATPase catalytic α subunit is a determinant of the enzyme redox sensitivity, J. Biol. Chem., 287, 32195-32205, https://doi.org/10.1074/jbc.M112.391094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koltsova, S. V., Shilov, B., Birulina, J. G., Akimova, O. A., Haloui, M., et al. (2014) Transcriptomic changes triggered by hypoxia: evidence for HIF-1α-independent, [Na+]i/[K+]i-mediated, excitation-transcription coupling, PLoS One, 9, e110597, https://doi.org/10.1371/journal.pone.0110597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Orlov, S. N., Birulina, Y. G., Smaglii, L. V., and Gusakova, S. V. (2017) In Hypoxia and Human Diseases (Zheng, J., and Zhou, C., eds.) IntechOpen, London, https://doi.org/10.5772/65384.

  17. Rose, C. R., and Konnerth, A. (2001) NMDA receptor-mediated Na+ signals in spines and dendrites, J. Neurosci., 21, 4207-4214, https://doi.org/10.1523/JNEUROSCI.21-12-04207.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Verkhratsky, A., Noda, M., Parpura, V., and Kirischuk, S. (2013) Sodium Calcium Exchange: A Growing Spectrum of Pathophysiological Implications: Proceedings of the 6th International Conference on Sodium Calcium Exchange (Annunziato, L., ed.) Springer US, Boston, pp. 295-305.

  19. Kapilevich, L. V., Kironenko, T. A., Zaharova, A. N., Kotelevtsev, Y. V., Dulin, N. O., et al. (2015) Skeletal muscle as an endocrine organ: role of [Na+]i/[K+]i-mediated excitation-transcription coupling, Genes Diseases, 2, 328-336, https://doi.org/10.1016/j.gendis.2015.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kironenko, T. A., Milovanova, K. G., Zakharova, A. N., Sidorenko, S. V., Klimanova, E. A., et al. (2021) Effect of dynamic and static load on the concentration of myokines in the blood plasma and content of sodium and potassium in mouse skeletal muscles, Biochemistry (Moscow), 86, 370-381, https://doi.org/10.1134/S0006297921030123.

    Article  CAS  Google Scholar 

  21. Jacobs, M. M., and Pienta, R. J. (1991) In Vitamins and Minerals in the Prevention and Treatment of Cancer (Jacobs, M. M., ed.) CRC Press, Boca Raton, pp. 228-245, https://doi.org/10.1080/07315724.1994.10738223.

  22. Reshkin, S. J., Cardone, R. A., and Harguindey, S. (2013) Na+-H+ exchanger, pH regulation and cancer, Recent Pat. Anticancer Drug Discov., 8, 85-99, https://doi.org/10.2174/1574892811308010085.

    Article  CAS  PubMed  Google Scholar 

  23. Li, T., and Tuo, B. (2020) Pathophysiology of hepatic Na+/H+ exchange (review), Exp. Ther. Med., 20, 1220-1229, https://doi.org/10.3892/etm.2020.8888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boardman, L., Huett, M., Lamb, J. F., Newton, J. P., and Polson, J. M. (1974) Evidence for the genetic control of the sodium pump density in HeLa cells, J. Physiol., 241, 771-794, https://doi.org/10.1113/jphysiol.1974.sp010684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pressley, T. A. (1988) Ion concentration-dependent regulation of Na,K-pump abundance, J. Membr. Biol., 105, 187-195, https://doi.org/10.1007/BF01870996.

    Article  CAS  PubMed  Google Scholar 

  26. Kometiani, P., Tian, J., Nabih, Z., Gick, G., and Xie, Z. (2000) Regulation of Na/K-ATPase β1-subunit gene expression by ouabain and other hypertrophic stimuli in neonatal rat cardiac myocytes, Mol. Cell. Biochem., 215, 65-72, https://doi.org/10.1023/A:1026503319387.

    Article  CAS  PubMed  Google Scholar 

  27. Huang, L., Li, H., and Xie, Z. (1997) Ouabain-induced hypertrophy in cultured cardiac myocytes is accompanied by changes in expression of several late response genes, J. Mol. Cell. Cardiol., 29, 429-437, https://doi.org/10.1006/jmcc.1996.0320.

    Article  CAS  PubMed  Google Scholar 

  28. Wang, H., Yuan, W., and Lu, Z. (2001) Effects of ouabain and digoxin on gene expression of sodium pump α-subunit isoforms in rat myocardium, Chinese Med. J., 114, 1055-1059, https://doi.org/10.3760/cma.j.issn.0366-6999.2001.10.111.

    Article  CAS  Google Scholar 

  29. Qiu, J., Gao, H.-Q., Li, B.-Y., and Shen, L. (2008) Proteomics investigation of protein expression changes in ouabain induced apoptosis in human umbilical vein endothelial cells, J. Cell. Biochem., 104, 1054-1064, https://doi.org/10.1002/jcb.21691.

    Article  CAS  PubMed  Google Scholar 

  30. Teixeira, M. P., and Rumjanek, V. M. (2014) Ouabain affects the expression of activation markers, cytokine production, and endocytosis of human monocytes, Mediat. Inflamm., 2014, e760368, https://doi.org/10.1155/2014/760368.

    Article  CAS  Google Scholar 

  31. Nakagawa, Y., Rivera, V., and Larner, A. C. (1992) A role for the Na/K-ATPase in the control of human c-fos and c-jun transcription, J. Biol. Chem., 267, 8785-8788, https://doi.org/10.1016/s0021-9258(19)50347-7.

    Article  CAS  PubMed  Google Scholar 

  32. Peng, M., Huang, L., Xie, Z., Huang, W.-H., and Askari, A. (1996) Partial inhibition of Na+/K+-ATPase by ouabain induces the Ca2+-dependent expressions of early-response genes in cardiac myocytes, J. Biol. Chem., 271, 10372-10378, https://doi.org/10.1074/jbc.271.17.10372.

    Article  CAS  PubMed  Google Scholar 

  33. Ando, K., Omi, N., Shimosawa, T., Takahashi, K., and Fujita, T. (2001) Effects of ouabain on the growth and DNA synthesis of PC12 cells, J. Cardiovasc. Pharmacol., 37, 233-238, https://doi.org/10.1097/00005344-200103000-00001.

    Article  CAS  PubMed  Google Scholar 

  34. Numazawa, S., Inoue, N., Nakura, H., Sugiyama, T., Fujino, E., et al. (1996) A cardiotonic steroid bufalin-induced differentiation of THP-1 cells: involvement of Na+, K+-ATPase inhibition in the early changes in proto-oncogene expression, Biochem. Pharmacol., 52, 321-329, https://doi.org/10.1016/0006-2952(96)00210-9.

    Article  CAS  PubMed  Google Scholar 

  35. Golomb, E., Hill, M. R., Brown, R. G., and Keiser, H. R. (1994) Ouabain enhances the mitogenic effect of serum in vascular smooth muscle cells: role of progesterone and digoxin-like substances, Am. J. Hypertens., 7, 69-74, https://doi.org/10.1093/ajh/7.1.69.

    Article  CAS  PubMed  Google Scholar 

  36. Pinto, M. C. X., Kihara, A. H., Goulart, V. A. M., Tonelli, F. M. P., Gomes, K. N., et al. (2015) Calcium signaling and cell proliferation, Cell Signal., 27, 2139-2149, https://doi.org/10.1016/j.cellsig.2015.08.006.

    Article  CAS  PubMed  Google Scholar 

  37. Aizman, O., Uhlén, P., Lal, M., Brismar, H., and Aperia, A. (2001) Ouabain, a steroid hormone that signals with slow calcium oscillations, Proc. Natl. Acad. Sci. USA, 98, 13420-13424, https://doi.org/10.1073/pnas.221315298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saunders, R., and Scheiner-Bobis, G. (2004) Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pump, Eur. J. Biochem., 271, 1054-1062, https://doi.org/10.1111/j.1432-1033.2004.04012.x.

    Article  CAS  PubMed  Google Scholar 

  39. Ottolia, M., Torres, N., Bridge, J. H. B., Philipson, K. D., and Goldhaber, J. I. (2013) Na/Ca exchange and contraction of the heart, J. Mol. Cell. Cardiol., 61, 28-33, https://doi.org/10.1016/j.yjmcc.2013.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Askari, A. (2019) The sodium pump and digitalis drugs: dogmas and fallacies, Pharmacol. Res. Perspect., 7, e00505, https://doi.org/10.1002/prp2.505.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Taurin, S., Dulin, N. O., Pchejetski, D., Grygorczyk, R., Tremblay, J., et al. (2002) c-Fos expression in ouabain-treated vascular smooth muscle cells from rat aorta: evidence for an intracellular-sodium-mediated, calcium-independent mechanism, J. Physiol., 543, 835-847, https://doi.org/10.1113/jphysiol.2002.023259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Haloui, M., Taurin, S., Akimova, O. A., Guo, D.-F., Tremblay, J., et al. (2007) [Na+]i-induced c-Fos expression is not mediated by activation of the 5′-promoter containing known transcriptional elements, FEBS J., 274, 3557-3567, https://doi.org/10.1111/j.1742-4658.2007.05885.x.

    Article  CAS  PubMed  Google Scholar 

  43. Koltsova, S. V., Trushina, Y., Haloui, M., Akimova, O. A., Tremblay, J., et al. (2012) Ubiquitous [Na+]i/[K+]i-sensitive transcriptome in mammalian cells: evidence for Ca2+i-independent excitation-transcription coupling, PLoS One, 7, e38032, https://doi.org/10.1371/journal.pone.0038032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Orlov, S. N., Thorin-Trescases, N., Kotelevtsev, S. V., Tremblay, J., and Hamet, P. (1999) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle at a site upstream of caspase-3, J. Biol. Chem., 274, 16545-16552, https://doi.org/10.1074/jbc.274.23.16545.

    Article  CAS  PubMed  Google Scholar 

  45. Orlov, S. N., Taurin, S., Thorin-Trescases, N., Dulin, N. O., Tremblay, J., et al. (2000) Inversion of the intracellular Na+/K+ ratio blocks apoptosis in vascular smooth muscle cells by induction of RNA synthesis, Hypertension, 35, 1062-1068, https://doi.org/10.1161/01.HYP.35.5.1062.

    Article  CAS  PubMed  Google Scholar 

  46. Taurin, S., Seyrantepe, V., Orlov, S. N., Tremblay, T.-L., Thibault, P., et al. (2002) Proteome analysis and functional expression identify mortalin as an antiapoptotic gene induced by elevation of [Na+]i/[K+]i ratio in cultured vascular smooth muscle cells, Circ. Res., 91, 915-922, https://doi.org/10.1161/01.RES.0000043020.45534.3E.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, X., Jiang, G., Zhao, A., Bondeva, T., Hirszel, P., et al. (2001) Inhibition of Na,K-ATPase activates PI3 kinase and inhibits apoptosis in LLC-PK1 cells, Biochem. Biophys. Res. Commun., 285, 46-51, https://doi.org/10.1006/bbrc.2001.5126.

    Article  CAS  PubMed  Google Scholar 

  48. Isaev, N. K., Stelmashook, E. V., Halle, A., Harms, C., Lautenschlager, M., et al. (2000) Inhibition of Na+,K+-ATPase activity in cultured rat cerebellar granule cells prevents the onset of apoptosis induced by low potassium, Neurosci. Lett., 283, 41-44, https://doi.org/10.1016/S0304-3940(00)00903-4.

    Article  CAS  PubMed  Google Scholar 

  49. Trevisi, L., Visentin, B., Cusinato, F., Pighin, I., and Luciani, S. (2004) Antiapoptotic effect of ouabain on human umbilical vein endothelial cells, Biochem. Biophys. Res. Commun., 321, 716-721, https://doi.org/10.1016/j.bbrc.2004.07.027.

    Article  CAS  PubMed  Google Scholar 

  50. Orlov, S. N., Klimanova, E. A., Tverskoi, A. M., Vladychenskaya, E. A., Smolyaninova, L. V., et al. (2017) Na+i,K+i-dependent and -independent signaling triggered by cardiotonic steroids: facts and artifacts, Molecules, 22, 635, https://doi.org/10.3390/molecules22040635.

    Article  CAS  PubMed Central  Google Scholar 

  51. Petrov, A. M., Kravtsova, V. V., Matchkov, V. V., Vasiliev, A. N., Zefirov, A. L., et al. (2017) Membrane lipid rafts are disturbed in the response of rat skeletal muscle to short-term disuse, Am. J. Physiol. Cell. Physiol., 312, C627-C637, https://doi.org/10.1152/ajpcell.00365.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Bezanilla, F. (2008) How membrane proteins sense voltage, Nat. Rev. Mol. Cell Biol., 9, 323-332, https://doi.org/10.1038/nrm2376.

    Article  CAS  PubMed  Google Scholar 

  53. Sidorenko, S., Klimanova, E., Milovanova, K., Lopina, O. D., Kapilevich, L. V., et al. (2018) Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: role of Ca2+i-mediated and Ca2+i-independent signaling and elevated [Na+]i/[K+]i ratio, Cell Calcium, 76, 72-86, https://doi.org/10.1016/j.ceca.2018.09.007.

    Article  CAS  PubMed  Google Scholar 

  54. Rajendran, P., Rengarajan, T., Thangavel, J., Nishigaki, Y., Sakthisekaran, D., et al. (2013) The vascular endothelium and human diseases, Int. J. Biol. Sci., 9, 1057-1069, https://doi.org/10.7150/ijbs.7502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiao, L., and Harrison, D. G. (2020) Inflammation in hypertension, Can. J. Cardiol., 36, 635-647, https://doi.org/10.1016/j.cjca.2020.01.013.

    Article  PubMed  Google Scholar 

  56. Minegishi, S., Luft, F. C., Titze, J., and Kitada, K. (2020) Sodium handling and interaction in numerous organs, Am. J. Hypertension, 33, 687-694, https://doi.org/10.1093/ajh/hpaa049.

    Article  CAS  Google Scholar 

  57. Oberleithner, H., and Wilhelmi, M. (2015) Vascular glycocalyx sodium store – determinant of salt sensitivity? Blood Purif., 39, 7-10, https://doi.org/10.1159/000368922.

    Article  CAS  PubMed  Google Scholar 

  58. Charbonier, F. W., Zamani, M., and Huang, N. F. (2019) Endothelial cell mechanotransduction in the dynamic vascular environment, Adv. Biosystems, 3, 1800252, https://doi.org/10.1002/adbi.201800252.

    Article  Google Scholar 

  59. Dmitrieva, N. I., and Burg, M. B. (2015) Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis, PLoS One, 10, e0128870, https://doi.org/10.1371/journal.pone.0128870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Thowsen, I. M., Karlsen, T. V., Nikpey, E., Haslene-Hox, H., Skogstrand, T., et al. (2022) Na+ is shifted from the extracellular to the intracellular compartment and is not inactivated by glycosaminoglycans during high salt conditions in rats, J. Physiol., 600, 2293-2309, https://doi.org/10.1113/JP282715.

    Article  CAS  PubMed  Google Scholar 

  61. Fedorov, D. A., Sidorenko, S. V., Yusipovich, A. I., Parshina, E. Y., Tverskoi, A. M., et al. (2021) Na+i/K+i imbalance contributes to gene expression in endothelial cells exposed to elevated NaCl, Heliyon, 7, e08088, https://doi.org/10.1016/j.heliyon.2021.e08088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fedorov, D., Sidorenko, S., Yusipovich, A., Bukach, O., Gorbunov, A., et al. (2022) Increased extracellular sodium concentration as a factor regulating gene expression in endothelium, Biochemistry (Moscow), 87, 488-498, https://doi.org/10.1134/S0006297922060013.

    Article  Google Scholar 

  63. Lang, F., Busch, G. L., Ritter, M., Völkl, H., Waldegger, S.,et al. (1998) Functional significance of cell volume regulatory mechanisms, Physiol. Rev., 78, 247-306, https://doi.org/10.1152/physrev.1998.78.1.247.

    Article  CAS  PubMed  Google Scholar 

  64. Mongin, A. A., and Orlov, S. N. (2001) Mechanisms of cell volume regulation and possible nature of the cell volume sensor, Pathophysiology, 8, 77-88, https://doi.org/10.1016/S0928-4680(01)00074-8.

    Article  CAS  PubMed  Google Scholar 

  65. Hoffmann, E. K., and Pedersen, S. F. (2011) Cell volume homeostatic mechanisms: effectors and signalling pathways, Acta Physiol., 202, 465-485, https://doi.org/10.1111/j.1748-1716.2010.02190.x.

    Article  CAS  Google Scholar 

  66. Neuhofer, W. (2010) Role of NFAT5 in inflammatory disorders associated with osmotic stress, Curr. Genomics, 11, 584-590, https://doi.org/10.2174/138920210793360961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koltsova, S. V., Tremblay, J., Hamet, P., and Orlov, S. N. (2015) Transcriptomic changes in Ca2+-depleted cells: Role of elevated intracellular [Na+]/[K+] ratio, Cell Calcium, 58, 317-324, https://doi.org/10.1016/j.ceca.2015.06.009.

    Article  CAS  PubMed  Google Scholar 

  68. Shiyan, A. A., Sidorenko, S. V., Fedorov, D., Klimanova, E. A., Smolyaninova, L. V., et al. (2019) Elevation of intracellular Na+ contributes to expression of early response genes triggered by endothelial cell shrinkage, Cell. Physiol. Biochem., 53, 638-647, https://doi.org/10.33594/000000162.

    Article  CAS  PubMed  Google Scholar 

  69. Klimanova, E. A., Sidorenko, S. V., Tverskoi, A. M., Shiyan, A. A., Smolyaninova, L. V., et al. (2019) Search for Intracellular sensors involved in the functioning of monovalent cations as secondary messengers, Biochemistry (Moscow), 84, 1280-1295, https://doi.org/10.1134/S0006297919110063.

    Article  CAS  Google Scholar 

  70. Verma, A., Halder, K., Halder, R., Yadav, V. K., Rawal, P., et al. (2008) Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species, J. Med. Chem., 51, 5641-5649, https://doi.org/10.1021/jm800448a.

    Article  CAS  PubMed  Google Scholar 

  71. Rhodes, D., and Lipps, H. J. (2015) G-quadruplexes and their regulatory roles in biology, Nucleic Acids Res., 43, 8627-8637, https://doi.org/10.1093/nar/gkv862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lago, S., Nadai, M., Cernilogar, F. M., Kazerani, M., Domíniguez Moreno, H., et al. (2021) Promoter G-quadruplexes and transcription factors cooperate to shape the cell type-specific transcriptome, Nat. Commun., 12, 3885, https://doi.org/10.1038/s41467-021-24198-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huppert, J. L., and Balasubramanian, S. (2007) G-quadruplexes in promoters throughout the human genome, Nucleic Acids Res., 35, 406-413, https://doi.org/10.1093/nar/gkl1057.

    Article  CAS  PubMed  Google Scholar 

  74. Eddy, J., and Maizels, N. (2006) Gene function correlates with potential for G4 DNA formation in the human genome, Nucleic Acids Res., 34, 3887-3896, https://doi.org/10.1093/nar/gkl529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Balaratnam, S., and Basu, S. (2015) Divalent cation-aided identification of physico-chemical properties of metal ions that stabilize RNA G-quadruplexes, Biopolymers, 103, 376-386, https://doi.org/10.1002/bip.22628.

    Article  CAS  PubMed  Google Scholar 

  76. Sen, D., and Gilbert, W. (1990) A sodium-potassium switch in the formation of four-stranded G4-DNA, Nature, 344, 410-414, https://doi.org/10.1038/344410a0.

    Article  CAS  PubMed  Google Scholar 

  77. Włodarczyk, A., Grzybowski, P., Patkowski, A., and Dobek, A. (2005) Effect of ions on the polymorphism, effective charge, and stability of human telomeric DNA. Photon correlation spectroscopy and circular dichroism studies, J. Phys. Chem. B, 109, 3594-3605, https://doi.org/10.1021/jp045274d.

    Article  CAS  PubMed  Google Scholar 

  78. Grand, C. L., Han, H., Muñoz, R. M., Weitman, S., Von Hoff, D. D., et al. (2002) The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo, Mol. Cancer Ther., 1, 565-573.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-75-10009).

Author information

Authors and Affiliations

Authors

Contributions

Lopina, Bukach, and Klimanova wrote the original text of the manuscript; Fedorov and Sidorenko preparing illustrations and tables; all authors reviewed the manuscript.

Corresponding authors

Correspondence to Olga D. Lopina or Elizaveta A. Klimanova.

Ethics declarations

The authors declare no conflicts of interest. This article does not describe any research involving humans or animals as subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopina, O.D., Fedorov, D.A., Sidorenko, S.V. et al. Sodium Ions as Regulators of Transcription in Mammalian Cells. Biochemistry Moscow 87, 789–799 (2022). https://doi.org/10.1134/S0006297922080107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922080107

Keywords

Navigation