Skip to main content
Log in

Interaction of Venturicidin and Fo·F1-ATPase/ATP Synthase of Tightly Coupled Subbacterial Particles of Paracoccus denitrificans in Energized Membranes

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Proton-translocating Fo∙F1-ATPase/synthase that catalyzes synthesis and hydrolysis of ATP is commonly considered to be a reversibly functioning complex. We have previously shown that venturicidin, a specific Fo-directed inhibitor, blocks the synthesis and hydrolysis of ATP with a significant difference in the affinity [Zharova, T. V. and Vinogradov, A. D. (2017) Biochim. Biophys. Acta, 1858, 939-944]. In this paper, we have studied in detail inhibition of Fo∙F1-ATPase/synthase by venturicidin in tightly coupled membranes of Paracoccus denitrificans under conditions of membrane potential generation. ATP hydrolysis was followed by the ATP-dependent succinate-supported NAD+ reduction (potential-dependent reverse electron transfer) catalyzed by the respiratory chain complex I. It has been demonstrated that membrane energization did not affect the affinity of Fo∙F1-ATPase/synthase for venturicidin. The dependence of the residual ATP synthase activity on the concentration of venturicidin approximated a linear function, whereas the dependence of ATP hydrolysis was sigmoidal: at low inhibitor concentrations venturicidin strongly inhibited ATP synthesis without decrease in the rate of ATP hydrolysis. A model is proposed suggesting that ATP synthesis and ATP hydrolysis are catalyzed by two different forms of Fo∙F1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

ΔΨ:

transmembrane electric potential

CCCP:

carbonyl cyanide m-chlorophenylhydrazone

F1 :

hydrophilic part of ATP synthase

Fo :

membrane part of ATP synthase

pmf :

proton motive force (difference between electrochemical potentials of hydrogen ions across a coupling membrane)

S-13:

5-chloro-3-tert-butyl-2′-chloro-4′-nitrosalicylanilide

SBPs:

subbacterial particles of Paracoccus denitrificans

References

  1. Walker, J. E. (2013) The ATP synthase: the understood, the uncertain and the unknown, Biochem. Soc. Trans., 41, 1-16, https://doi.org/10.1042/BST20110773.

    Article  CAS  PubMed  Google Scholar 

  2. Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Structure at 2.8 A resolution of F1-ATPase from bovine heart mitochondria, Nature, 370, 621-628, https://doi.org/10.1038/370621a0.

    Article  CAS  PubMed  Google Scholar 

  3. Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K. Jr. (1997) Direct observation of the rotation of F1-ATPase, Nature, 386, 299-302, https://doi.org/10.1038/386299a0.

    Article  CAS  PubMed  Google Scholar 

  4. Boyer, P. D. (1998) Energy, life, and ATP, Biosci. Rep., 18, 97-117, https://doi.org/10.1023/a:1020188311092.

    Article  CAS  PubMed  Google Scholar 

  5. Schulz, S., Wilkes, M., Mills, D. J., Kühlbrandt, W., and Meier, T. (2017) Molecular architecture of the N-type ATPase rotor ring from Burkholderia pseudomallei, EMBO Rep., 18, 526-535, https://doi.org/10.15252/embr.201643374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kühlbrandt, W. (2019) Structure and mechanisms of F-type ATP synthases, Annu. Rev. Biochem., 88, 515-549, https://doi.org/10.1146/annurev-biochem-013118-110903.

    Article  CAS  PubMed  Google Scholar 

  7. Boyer, P. D. (1997) The ATP synthase – a splendid molecular machine, Annu. Rev. Biochem., 66, 717-749, https://doi.org/10.1146/annurev.biochem.66.1.717.

    Article  CAS  PubMed  Google Scholar 

  8. Itoh, H., Takahashi, A., Adachi, K., Noji, H., Yasuda, R., Yoshida, M., et al. (2004) Mechanically driven ATP synthesis by F1-ATPase, Nature, 427, 465-468, https://doi.org/10.1038/nature02212.

    Article  CAS  PubMed  Google Scholar 

  9. Al-Shawi, M. K., Ketchum, C. J., and Nakamoto, R. K. (1997) The Escherichia coli Fo∙F1 gamma M23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway, Biochemistry, 36, 12961-12969, https://doi.org/10.1021/bi971478r.

    Article  CAS  PubMed  Google Scholar 

  10. Weber, J., and Senior, A. E. (2000) ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis, Biochim. Biophys. Acta, 1458, 300-309, https://doi.org/10.1016/s0005-2728(00)00082-7.

    Article  CAS  PubMed  Google Scholar 

  11. Schwerzmann, K., and Pedersen, P. L. (1986) Regulation of the mitochondrial ATP synthase/ATPase complex, Arch. Biochem. Biophys., 250, 1-18, https://doi.org/10.1016/0003-9861(86)90695-8.

    Article  CAS  PubMed  Google Scholar 

  12. Vasil’eva, E. A., Panchenko, M. V., and Vinogradov, A. D. (1989) Interaction of ATPase from submitochondrial fragments and a natural inhibitor protein during ΔµH+ generation on a membrane [in Russian], Biokhimiia, 54, 1490-1498.

    PubMed  Google Scholar 

  13. Lee, C., and Ernster, L. (1968) Studies of the energy-transfer system of submitochondrial particles. 2. Effects of oligomycin and aurovertin, Eur. J. Biochem., 3, 391-400, https://doi.org/10.1111/j.1432-1033.1967.tb19542.x.

    Article  CAS  PubMed  Google Scholar 

  14. Roberton, A. M., Holloway, C. T., Knight, I. G., and Beechey, R. B. (1968) A comparison of the effects of NN'-dicyclohexylcarbodi-imide, oligomycin A and aurovertin on energy-linked reactions in mitochondria and submitochondrial particles, Biochem. J., 108, 445-456, https://doi.org/10.1042/bj1080445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Syroeshkin, A. V., Vasilyeva, E. A., and Vinogradov, A. D. (1995) ATP synthesis catalyzed by the mitochondrial F1-F0 ATP synthase is not a reversal of its ATPase activity, FEBS Lett., 366, 29-32, https://doi.org/10.1016/0014-5793(95)00487-t.

    Article  CAS  PubMed  Google Scholar 

  16. Bald, D., Amano, T., Muneyuki, E., Pitard, B., Rigaud, J. L., et al. (1998) ATP synthesis by FoF1-ATP synthase independent of noncatalytic nucleotide binding sites and insensitive to azide inhibition, J. Biol. Chem., 273, 865-870, https://doi.org/10.1074/jbc.273.2.865.

    Article  CAS  PubMed  Google Scholar 

  17. García, J. J., Tuena de Gómez-Puyou, M., and Gómez-Puyou, A. J. (1995) Inhibition by trifluoperazine of ATP synthesis and hydrolysis by particulate and soluble mitochondrial F1: competition with H2PO4, J. Bioenerg. Biomembr., 27, 127-136, https://doi.org/10.1007/BF02110340.

    Article  PubMed  Google Scholar 

  18. Vinogradov, A. D. (1984) Catalytic properties of mitochondrial ATP-synthetase [in Russian], Biokhimiia, 49, 1220-1238.

    CAS  PubMed  Google Scholar 

  19. Gao, Y. Q., Yang, W., and Karplus, M. (2005) A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase, Cell, 123, 195-205, https://doi.org/10.1016/j.cell.2005.10.001.

    Article  CAS  PubMed  Google Scholar 

  20. Vinogradov, A. D. (2000) Steady-state and pre-steady-state kinetics of the mitochondrial Fo∙F1 ATPase: is ATP synthase a reversible molecular machine? J. Exp. Biol., 203, 41-49, https://doi.org/10.1242/jeb.203.1.41.

    Article  CAS  PubMed  Google Scholar 

  21. Vinogradov, A. D. (2019) New perspective on the reversibility of ATP synthesis and hydrolysis by Fo∙F1-ATP synthase (hydrolase), Biochemistry (Moscow), 84, 1247-1255, https://doi.org/10.1134/S0006297919110038.

    Article  CAS  Google Scholar 

  22. John, P., and Whatley, F. R. (1975) Paracoccus denitrificans and the evolutionary origin of the mitochondrion, Nature, 254, 495-498, https://doi.org/10.1038/254495a0.

    Article  CAS  PubMed  Google Scholar 

  23. Perez, J. A., and Ferguson, S. J. (1990) Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 1. Mechanism of ATP synthesis at the active site(s) of FoF1-ATPase, Biochemistry, 29, 10503-10518, https://doi.org/10.1021/bi00498a013.

    Article  CAS  PubMed  Google Scholar 

  24. Pacheco-Moises, F., García, J. J., Rodriguez, J. S., and Moreno-Sanchez, R. (2000) Sulfite and membrane energization induce two different active states of the Paracoccus denitrificans FoF1-ATPase, Eur. J. Biochem., 267, 993-1000, https://doi.org/10.1046/j.1432-1327.2000.01088.x.

    Article  CAS  PubMed  Google Scholar 

  25. Zharova, T. V., and Vinogradov, A. D. (2003) Proton-translocating ATP-synthase of Paracoccus denitrificans: ATP-hydrolytic activity, Biochemistry (Moscow), 68, 1101-1108, https://doi.org/10.1023/a:1026306611821.

    Article  CAS  Google Scholar 

  26. Zharova, T. V., and Vinogradov, A. D. (2004) Energy-dependent transformation of Fo·F1-ATPase in Paracoccus denitrificans plasma membranes, J. Biol. Chem., 279, 12319-12324, https://doi.org/10.1074/jbc.M311397200.

    Article  CAS  PubMed  Google Scholar 

  27. Kegyarikova, K. A., Zharova, T. V., and Vinogradov, A. D. (2010) Paracoccus denitrificans proton-translocating ATPase: kinetics of oxidative phosphorylation, Biochemistry (Moscow), 75, 1264-1271, https://doi.org/10.1134/s0006297910100081.

    Article  CAS  Google Scholar 

  28. Hong, S., and Pedersen, P. L. (2008) ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas, Microbiol. Mol. Biol. Rev., 72, 590-641, https://doi.org/10.1128/MMBR.00016-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zharova, T. V., and Vinogradov, A. D. (2017) Functional heterogeneity of Fo·F1 H+-ATPase/synthase in coupled Paracoccus denitrificans plasma membranes, Biochim. Biophys. Acta, 1858, 939-944, https://doi.org/10.1016/j.bbabio.2017.08.006.

    Article  CAS  Google Scholar 

  30. Schafer, G. (1982) Differentiation of two states of F1-ATPase by nucleotide analogs, FEBS Lett., 139, 271-275, https://doi.org/10.1016/0014-5793(82)80868-5.

    Article  CAS  PubMed  Google Scholar 

  31. Vinogradov, A. D. (1998) Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition, Biochim. Biophys. Acta, 1364, 169-185, https://doi.org/10.1016/s0005-2728(98)00026-7.

    Article  CAS  PubMed  Google Scholar 

  32. John, P., and Whatley, F. R. (1970) Oxidative phosphorylation coupled to oxygen uptake and nitrate reduction in Micrococcus denitrificans, Biochim. Biophys. Acta, 216, 342-352, https://doi.org/10.1016/0005-2728(70)90225-2.

    Article  CAS  PubMed  Google Scholar 

  33. John, P., and Hamilton, W. A. (1970) Respiratory control in membrane particles from Micrococcus denitrificans, FEBS Lett., 10, 246-248, https://doi.org/10.1016/0014-5793(70)80639-1.

    Article  CAS  PubMed  Google Scholar 

  34. Chance, B., and Nishimura, M. (1967) Sensitive measurements of changes of hydrogen ion concentration, Methods Enzymol., 10, 641-650, https://doi.org/10.1016/0076-6879(67)10106-7.

    Article  CAS  Google Scholar 

  35. Waggoner, A. S. (1979) The use of cyanine dyes for the determination of membrane potentials in cells, organelles, and vesicles, Methods Enzymol., 55, 689-695, https://doi.org/10.1016/0076-6879(79)55077-0.

    Article  CAS  PubMed  Google Scholar 

  36. Perlin, D. S., Latchey, L. R., and Senior, A. E. (1985) Inhibition of Escherichia coli H+-ATPase by venturicidin, oligomycin and ossamycin, Biochim. Biophys. Acta, 807, 238-244, https://doi.org/10.1016/0005-2728(85)90254-3.

    Article  CAS  PubMed  Google Scholar 

  37. Linnett, P. E., and Beechey, R. B. (1979) Inhibitors of the ATP synthethase system, Methods Enzymol., 55, 472-518, https://doi.org/10.1016/0076-6879(79)55061-7.

    Article  CAS  PubMed  Google Scholar 

  38. Grivennikova, V. G., Roth, R., Zakharova, N. V., Hagerhall, C., and Vinogradov, A. D. (2003) The mitochondrial and prokaryotic proton-translocating NADH:ubiquinone oxidoreductases: similarities and dissimilarities of the quinone-junction sites, Biochim. Biophys. Acta, 1607, 79-90, https://doi.org/10.1016/j.bbabio.2003.09.001.

    Article  CAS  PubMed  Google Scholar 

  39. Kotlyar, A. B., and Borovok, N. (2002) NADH oxidation and NAD+ reduction catalysed by tightly coupled inside-out vesicles from Paracoccus denitrificans, Eur. J. Biochem., 269, 4020-4024, https://doi.org/10.1046/j.1432-1033.2002.03091.x.

    Article  CAS  PubMed  Google Scholar 

  40. Grivennikova, V. G., Kotlyar, A. B., Karliner, J. S., Cecchini, G., and Vinogradov, A. D. (2007) Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I, Biochemistry, 46, 10971-10980, https://doi.org/10.1021/bi7009822.

    Article  CAS  PubMed  Google Scholar 

  41. Gladyshev, G. V., Grivennikova, V. G., and Vinogradov, A. D. (2018) FMN site-independent energy-linked reverse electron transfer in mitochondrial respiratory complex I, FEBS Lett., 592, 2213-2219, https://doi.org/10.1002/1873-3468.13117.

    Article  CAS  PubMed  Google Scholar 

  42. Zharova, T. V., and Vinogradov, A. D. (2006) Energy-linked binding of Pi is required for continuous steady-state proton-translocating ATP hydrolysis catalyzed by Fo·F1 ATP synthase, Biochemistry, 45, 14552-14558, https://doi.org/10.1021/bi061520v.

    Article  CAS  PubMed  Google Scholar 

  43. Harris, D. A., John, P., and Rada, G. K. (1977) Tightly bound nucleotides of the energy-transducing ATPase, and their role in oxidative phosphorylation. I. The Paracoccus denitrificans system, Biochim. Biophys. Acta, 459, 546-559, https://doi.org/10.1016/0005-2728(77)90053-6.

    Article  CAS  PubMed  Google Scholar 

  44. Morales-Rios, E., de la Rosa-Morales, F., Mendoza-Hernandez, G., Rodríguez-Zavala, J. S., Celis, H., et al. (2010) A novel 11-kDa inhibitory subunit in the F1F0 ATP synthase of Paracoccus denitrificans and related alpha-proteobacteria, FASEB J., 24, 599-607, https://doi.org/10.1096/fj.09-137356.

    Article  CAS  PubMed  Google Scholar 

  45. Guo, H., Suzuki, T., and Rubinstein, J. L. (2019) Structure of a bacterial ATP synthase, eLife, 8, e43128, https://doi.org/10.7554/eLife.43128.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mendoza-Hoffmann, F., Pérez-Oseguera, Á., Cevallos, M. Á., Zarco-Zavala, M., Ortega, R., et al. (2018) The biological role of the ζ subunit as unidirectional inhibitor of the F1·F0-ATPase of Paracoccus denitrificans, Cell Rep., 22, 1067-1078, https://doi.org/10.1016/j.celrep.2017.12.106.

    Article  CAS  PubMed  Google Scholar 

  47. Morales-Rios, E., Watt, I. N., Zhang, Q., Ding, S., Fearnley, I. M., et al. (2015) Purification, characterization and crystallization of the F-ATPase from Paracoccus denitrificans, Open Biol., 5, 150119, https://doi.org/10.1098/rsob.150119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zarco-Zavala, M., Mendoza-Hoffmann, F., and García-Trejo, J. J. (2018) Unidirectional regulation of the F1Fo-ATP synthase nanomotor by the ζ pawl-ratchet inhibitor protein of Paracoccus denitrificans and related α-proteobacteria, Biochim. Biophys. Acta, 1859, 762-774, https://doi.org/10.1016/j.bbabio.2018.06.005.

    Article  CAS  Google Scholar 

  49. Guo, H., Courbon, G. M., Bueler, S. A., Mai, J., Liu, J., et al. (2021) Structure of mycobacterial ATP synthase bound to the tuberculosis drug bedaquiline, Nature, 589, 143-147, https://doi.org/10.1038/s41586-020-3004-3.

    Article  CAS  PubMed  Google Scholar 

  50. Milgrom, Y. M., and Duncan, T. D. (2021) Complex effects of macrolide venturicidins on bacterial F-ATPases likely contribute to their action as antibiotic adjuvants, Sci. Rep., 11, 13631, https://doi.org/10.1038/s41598-021-93098-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Andries, K., Verhasselt, P., Guillemont, J., Göhlmann, H. W., Neefs, J. M., et al. (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis, Science, 307, 223-227, https://doi.org/10.1126/science.1106753.

    Article  CAS  PubMed  Google Scholar 

  52. Patel, B. A., D’Amico, T. L., and Blagg, B. S. J. (2020) Natural products and other inhibitors of F1Fo ATP synthase, Eur. J. Med. Chem., 207, 112779, https://doi.org/10.1016/j.ejmech.2020.112779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, T., Ma, F., and Qian, H. L. (2021) Defueling the cancer: ATP synthase as an emerging target in cancer therapy, Mol. Ther. Oncolytics, 23, 82-95, https://doi.org/10.1016/j.omto.2021.08.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yarlagadda, V., Medina, R., and Wright, G. D. (2020) Venturicidin A, a membrane-active natural product inhibitor of ATP synthase potentiates aminoglycoside antibiotics, Sci. Rep., 10, 8134, https://doi.org/10.1038/s41598-020-64756-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We fondly remember Andrey Dmitrievich Vinogradov, an outstanding scientist and our teacher, who had headed our laboratory and raised multiple generations of scientists, who have worked and currently work in Russia and abroad. We are eternally grateful to him for many years of collaborative work.

We thank Dr. Anna Brzyska and Mr. Grigory Gladyshev for their linguistic help in preparation of this manuscript.

Funding

The work was supported by the Russian Science Foundation (project no. 22-24-00106).

Author information

Authors and Affiliations

Authors

Contributions

T.V.Z. oversaw the study and conducted experiments; T.V.Z., V.G.G., and V.S.K. discussed the results; V.S.K. developed the mathematical model; T.V.Z. and V.G.G. wrote the manuscript.

Corresponding author

Correspondence to Tatyana V. Zharova.

Ethics declarations

The authors declare no conflicts of interest in financial or any other sphere. This article does not include the experiments involving humans or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zharova, T.V., Kozlovsky, V.S. & Grivennikova, V.G. Interaction of Venturicidin and Fo·F1-ATPase/ATP Synthase of Tightly Coupled Subbacterial Particles of Paracoccus denitrificans in Energized Membranes. Biochemistry Moscow 87, 742–751 (2022). https://doi.org/10.1134/S0006297922080065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297922080065

Keywords

Navigation