Skip to main content
Log in

Role of the Earth’s Motions in Plant Orientation – Planetary Mechanism

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

According to the proposed theory, the starch-rich particles (statoliths) help the plant to convert the signals from Earth’s motions into the signals necessary for the plant to perceive its orientation relative to the gravity vector while moving freely because of inertia in the sensory cells (statocytes) of roots and stems. Motions of the Earth are never constant, which, in particular, refers to the so-called polar motions and oscillations of the planet’s rotation axis. Statoliths at any given moment move in the cytoplasmic liquid of statocytes due to inertial motion initiated by the action of the Earth’s movements, maintaining the trajectory set by the previous movement of the oscillating planet. Unlike statoliths, the walls of a statocyte move in space along with the entire plant and with the Earth, in strict accordance with the current direction of motion of the planet’s axis. This leads to the inevitable collision of statoliths with the statocytic wall/membrane. Cytoplasmic liquid, as a substance that is not able to maintain its shape, does not interfere with the inertial motions of the statoliths and collision with the wall of the statocyte. By striking the membrane, statoliths cause the release of ions and other factors at the impact site, which further participate in the gravitropic process. Pressure of the sediment of statoliths at the bottom of the statocyte, as well as position of this sediment, are not the defining factors of gravitropism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Darwin, C., and Darwin, F (1880) The Power of Movement in Plants, John Murray, London.

  2. Haberlandt, G. (1914) Physiological plant anatomy, Macmillan and Company.

  3. Sack, F. D. (1991) Plant gravity sensing, Int. Rev. Cytol., 127, 193-252.

    Article  CAS  Google Scholar 

  4. Kiss, J. Z. (2000) Mechanisms of the early phases of plant gravitropism, Crit. Rev. Plant Sci., 19, 551-573, https://doi.org/10.1080/07352680091139295.

    Article  CAS  PubMed  Google Scholar 

  5. Nakamura, M., Nishimura, T., and Morita, M. T. (2019) Gravity sensing and signal conversion in plant gravitropism, J. Exp. Botany, 70, 3495-3506, https://doi.org/10.1093/jxb/erz158.

    Article  CAS  Google Scholar 

  6. Abe, Y., Meguriya, K., Matsuzaki, T., Sugiyama, T., Yoshikawa, H. Y., et al. (2020) Micromanipulation of amyloplasts with optical tweezers in Arabidopsis stems, Plant Biotechnol., 37, 405-415, https://doi.org/10.5511/plantbiotechnology.20.1201a.

    Article  CAS  Google Scholar 

  7. Fukaki, H., Wysocka-Diller, J., Kato, T., Fujisawa, H., Benfey, P. N., and Tasaka, M. (1998) Genetic evidence that the endodermis is essential for shoot gravitropism in Arabidopsis thaliana, Plant J., 14, 425-430.

    Article  CAS  Google Scholar 

  8. Takahashi, K., Takahashi, H., Furuichi, T., Toyota, M., Furutani-Seiki, M., et al. (2021) Gravity sensing in plant and animal cells, NPJ Microgravity, 7, 2, https://doi.org/10.1038/s41526-020-00130-8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Muthert, L., Izzo, L. G., van Zanten, M., and Aronne, G. (2020) Root tropisms: investigations on earth and in space to unravel plant growth direction, Front. Plant Sci., 10, 1807, https://doi.org/10.3389/fpls.2019.01807.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Morita, M. T., and Tasaka, M. (2004) Gravity sensing and signaling, Curr. Opin. Plant Biol., 7, 712-718, https://doi.org/10.1016/j.pbi.2004.09.001.

    Article  CAS  PubMed  Google Scholar 

  11. Staves M. P. (1997) Cytoplasmic streaming and gravity sensing in Chara internodal cells, Planta, 203 (Suppl 1), S79-S84, https://doi.org/10.1007/pl00008119.

    Article  Google Scholar 

  12. Perbal, G., and Perbal, P. (1976) Geoperception in the lentil root cap, Physiol. Plant., 37, 42-48.

    Article  CAS  Google Scholar 

  13. Kondrachuk, A. V. (2001) Theoretical considerations of plant gravisensing, Adv. Space Res., 27, 907-914, https://doi.org/10.1016/s0273-1177(01)00187-9.

    Article  CAS  PubMed  Google Scholar 

  14. Tatsumi, H., Furuichi, T., Nakano, M., Toyota, M., Hayakawa, K., et al. (2014) Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants, Plant Biol. J., 16, 18-22, https://doi.org/10.1111/plb.12095.

    Article  Google Scholar 

  15. Guharay, F., and Sachs, F. (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle, J. Physiol., 352, 685.

    Article  CAS  Google Scholar 

  16. Levernier, N., Pouliquen, O., and Forterre, Y. (2021) An integrative model of plant gravitropism linking statoliths position and auxin transport, Front. Plant Sci., 12, 651928, https://doi.org/10.3389/fpls.2021.651928.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chauvet, H., Pouliquen, O., Forterre, Y., Legué, V., and Moulia, B. (2016) Inclination not force is sensed by plants during shoot gravitropism, Sci. Rep., 6, 35431, https://doi.org/10.1038/srep35431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pouliquen, O., Forterre, Y., Bérut, A., Chauvet, H., Bizet, F., et al. (2017) A new scenario for gravity detection in plants: the position sensor hypothesis, Phys. Biol., 14, 035005, https://doi.org/10.1088/1478-3975/aa6876.

    Article  CAS  PubMed  Google Scholar 

  19. Bérut, A., Chauvet, H., Legué, V., Moulia, B., Pouliquen, O., and Forterre, Y. (2018) Gravisensors in plant cells behave like an active granular liquid, Proc. Natl. Acad. Sci. USA, 115, 5123, https://doi.org/10.1073/pnas.1801895115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Perbal, G., and Driss-Ecole, D. (2003) Mechanotransduction in gravisensing cells, Trends Plant Sci., 8, 498-504, https://doi.org/10.1016/j.tplants.2003.09.005.

    Article  CAS  PubMed  Google Scholar 

  21. Richter, P., Strauch, S. M., and Lebert, M. (2019) Disproval of the starch-amyloplast hypothesis? Trends Plant Sci., 24, 291-293, https://doi.org/10.1016/j.tplants.2019.02.008.

    Article  CAS  PubMed  Google Scholar 

  22. Häder, D. P., Braun, M., Grimm, D., and Hemmersbach, R. (2017) Gravireceptors in eukaryotes-a comparison of case studies on the cellular level, NPJ Microgravity, 3, 13, https://doi.org/10.1038/s41526-017-0018-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Limbach, C., Hauslage, J., Schäfer, C, and Braun, M. (2005) How to activate a plant gravireceptor. Early mechanisms of gravity sensing studied in characean rhizoids during parabolic flights, Plant Physiol., 139, 1030-1040, https://doi.org/10.1104/pp.105.068106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meroz, Y., and Bastien, R. (2014) Stochastic processes in gravitropism, Front. Plant Sci., 5, 674, https://doi.org/10.3389/fpls.2014.00674.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Morita, M. T. (2010) Directional gravity sensing in gravitropism, Annu. Rev. Plant Biol., 61, 705-720, https://doi.org/10.1146/annurev.arplant.043008.092042.

    Article  CAS  PubMed  Google Scholar 

  26. Caspar, T., and Pickard, B. G. (1989) Gravitropism in a starchless mutant of Arabidopsis: implications for the starch-statolith theory of gravity sensing, Planta, 177, 185-197.

    Article  Google Scholar 

  27. Dehant, V., Laguerre, R., Rekier, J., Rivoldini, A., Triana, S. A., et al. (2017) Understanding the effects of the core on the nutation of the Earth, Geodesy Geodynamics, 8, 389-395.

    Article  Google Scholar 

  28. Zajdel, R., Sośnica, K., Bury, G., Dach, R., Prange, L., and Kazmierski, K. (2021) Sub-daily polar motion from GPS, GLONASS, and Galileo, J. Geodesy, 95, 1-27.

    Article  Google Scholar 

  29. Dehant, V., Triana, S. A., Rekier, J., Trinh, A., Zhu, P., et al. (2020) Progress in understanding nutations, Astrometry, Earth Rotation, and Reference Systems in the GAIA era, 233-236, URL: https://dial.uclouvain.be/pr/boreal/object/boreal%3A249469/datastream/PDF_01/view.

  30. Dehant, V., and Mathews, P. M. (2015) Precession, Nutation, and Wobble of the Earth, Cambridge University Press, 536 p.

  31. Chao, B. F. (2017) Dynamics of the inner core wobble under mantle-inner core gravitational interactions, J. Geophys. Res. Solid Earth, 122, 7437-7448, https://doi.org/10.1002/2017JB014405.

    Article  Google Scholar 

  32. Zhu, P., Triana, S. A., Rekier, J., Trinh, A., and Dehant, V. (2021) Quantification of corrections for the main lunisolar nutation components and analysis of the free core nutation from VLBI-observed nutation residuals, J. Geodesy, 95, 1-15.

    Article  Google Scholar 

  33. Konstantinova, N., Korbei, B., and Luschnig, C. (2021) Auxin and root gravitropism: addressing basic cellular processes by exploiting a defined growth response, Int. J. Mol. Sci., 22, 2749, https://doi.org/10.3390/ijms22052749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiao, Z., Du, H., Chen, S., Huang, W., and Ge, L. (2021) LAZY gene family in plant gravitropism, Front. Plant Sci., 11, 606241, https://doi.org/10.3389/fpls.2020.606241.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sack, F. D., Suyemoto, M. M., and Leopold, A. C. (1986) Amyloplast sedimentation and organelle saltation in living corn columella cells, Am. J. Bot., 73, 1692-1698.

    Article  CAS  Google Scholar 

  36. Nakamura, M., Toyota, M., Tasaka, M., and Morita, M. T. (2015) Live cell imaging of cytoskeletal and organelle dynamics in gravity-sensing cells in plant gravitropism, Methods Mol. Biol., 1309, 57-69, https://doi.org/10.1007/978-1-4939-2697-8_6.

    Article  PubMed  Google Scholar 

  37. Zhang, Y., Xiao, G., Wang, X., Zhang, X., and Friml, J. (2019) Evolution of fast root gravitropism in seed plants, Nat. Commun., 10, 3480, https://doi.org/10.1038/s41467-019-11471-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Toyota, M., Furuichi, T., Sokabe, M., and Tatsumi, H. (2013) Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights, Plant Physiol., 163, 543-554, https://doi.org/10.1104/pp.113.223313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakano, M., Furuichi, T., Sokabe, M., Iida, H., and Tatsumi, H. (2021) The gravistimulation-induced very slow Ca2+ increase in Arabidopsis seedlings requires MCA1, a Ca2+-permeable mechanosensitive channel, Sci. Rep., 11, 227, https://doi.org/10.1038/s41598-020-80733-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oikawa, T., Ishimaru, Y., Munemasa, S., Takeuchi, Y., Washiyama, K., et al. (2018) Ion channels regulate nyctinastic leaf opening in Samanea saman, Curr. Biol., 28, 2230-2238.e7, https://doi.org/10.1016/j.cub.2018.05.042.

    Article  CAS  PubMed  Google Scholar 

  41. Hasenstein, K.H. (2009) Plant responses to gravity – insights and extrapolations from ground studies, Gravitational Space Biol., 22, 21, https://go.gale.com/ps/i.do?p=AONE&u=anon~babadf1b&id=GALE|A348311756&v=2.1&it=r&sid=googleScholar&asid=b061b220.

    Google Scholar 

  42. Wolfe, J., and Steponkus, P. L. (1981) The stress-strain relation of the plasma membrane of isolated plant protoplasts, Biochim. Biophys. Acta, 643, 663-668.

    Article  CAS  Google Scholar 

  43. Sachs, J. (1887) Lectures on the Physiology of Plants, Clarendon Press, Oxford, https://doi.org/10.5962/bhl.title.54852.

  44. Dumais, J. (2013) Beyond the sine law of plant gravitropism, Proc. Natl. Acad. Sci. USA, 110, 391-392.

    Article  CAS  Google Scholar 

  45. Iino, M., Tarui, Y., and Uematsu, C. (1996) Gravitropism of maize and rice coleoptiles: dependence on the stimulation angle, Plant Cell Environ., 19, 1160-1168.

    Article  CAS  Google Scholar 

  46. Toyota, M., Furuichi, T., Tatsumi, H., and Sokabe, M. (2008) Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings, Plant Physiol., 146, 505-514, https://doi.org/10.1104/pp.107.106450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Digby, J., and Firn, R. D. (1995) The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture, Plant Cell Environ., 18, 1434-1440, https://doi.org/10.1111/j.1365-3040.1995.tb00205.x.

    Article  CAS  PubMed  Google Scholar 

  48. Saito, C., Morita, M. T., Kato, T., and Tasaka, M. (2005) Amyloplasts and vacuolar membrane dynamics in the living graviperceptive cell of the arabidopsis inflorescence stem, Plant Cell, 17, 548-558, https://doi.org/10.1105/tpc.104.026138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakamura, M., Toyota, M., Tasaka, M., and Morita, M. T. (2011) An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing, Plant Cell, 23, 1830-1848.

    Article  CAS  Google Scholar 

  50. Zou, J. J., Zheng, Z. Y., Xue, S., Li, H. H., Wang, Y. R., and Le, J. (2016) The role of Arabidopsis Actin-Related Protein 3 in amyloplast sedimentation and polar auxin transport in root gravitropism, J. Exp. Botany, 67, 5325-5337, https://doi.org/10.1093/jxb/erw294.

    Article  CAS  Google Scholar 

  51. Baluska, F., Kreibaum, A., Vitha, S., Parker, J. S., Barlow, P. W., and Sievers, A. (1997) Central root cap cells are depleted of endoplasmic microtubules and actin microfilament bundles: implications for their role as gravity-sensing statocytes, Protoplasma, 196, 212-223, https://doi.org/10.1007/BF01279569.

    Article  CAS  PubMed  Google Scholar 

  52. Knight, T. A. (1806) On the direction of the radicle and germen during the vegetation of seeds, Philos. Trans. R. Soc. Lond., 96, 108-120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey M. Olovnikov.

Ethics declarations

The author declares no conflicts of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olovnikov, A.M. Role of the Earth’s Motions in Plant Orientation – Planetary Mechanism. Biochemistry Moscow 86, 1388–1394 (2021). https://doi.org/10.1134/S0006297921110031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921110031

Keywords

Navigation