Skip to main content
Log in

Yeast Translational Activator Mss51p and Human ZMYND17 – Two Proteins with a Common Origin, but Different Functions

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Despite its similarity to protein biosynthesis in bacteria, translation in the mitochondria of modern eukaryotes has several unique features, such as the necessity for coordination of translation of mitochondrial mRNAs encoding proteins of the electron transport chain complexes with translation of other protein components of these complexes in the cytosol. In the mitochondria of baker’s yeast Saccharomyces cerevisiae, this coordination is carried out by a system of translational activators that predominantly interact with the 5′-untranslated regions of mitochondrial mRNAs. No such system has been found in human mitochondria, except a single identified translational activator, TACO1. Here, we studied the role of the ZMYND17 gene, an ortholog of the yeast gene for the translational activator Mss51p, on the mitochondrial translation in human cells. Deletion of the ZMYND17 gene did not affect translation in the mitochondria, but led to the decrease in the cytochrome c oxidase activity and increase in the amount of free F1 subunit of ATP synthase. We also investigated the evolutionary history of Mss51p and ZMYND17 and suggested a possible mechanism for the divergence of functions of these orthologous proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

5′-UTR:

5′-untranslated region

CIV:

cytochrome c oxidase complex IV

References

  1. Lazcano, A., and Peretó, J. (2021) Prokaryotic symbiotic consortia and the origin of nucleated cells: a critical review of Lynn Margulis hypothesis, BioSystems, 204, 104408, https://doi.org/10.1016/j.biosystems.2021.104408.

    Article  PubMed  Google Scholar 

  2. Levitskii, S. A., Baleva, M. V., Chicherin, I. V., Krasheninnikov, I. A., and Kamenski, P. A. (2020) Protein biosynthesis in mitochondria: past simple, present perfect, future indefinite, Biochemistry (Moscow), 85, 257-263, https://doi.org/10.1134/S0006297920030013.

    Article  CAS  Google Scholar 

  3. Kuzmenko, A. V., Levitskii, S. A., Vinogradova, E. N., Atkinson, G. C., Hauryliuk, V., et al. (2013) Protein biosynthesis in mitochondria, Biochemistry, 78, 855-866.

    CAS  PubMed  Google Scholar 

  4. Al-Faresi, R. A. Z., Lightowlers, R. N., Chrzanowska-Lightowlers, Z. M. A. (2019) Mammalian mitochondrial translation-revealing consequences of divergent evolution, Biochem. Soc. Trans., 47, 1429-1436, https://doi.org/10.1042/BST20190265.

    Article  CAS  PubMed  Google Scholar 

  5. Foury, F., Roganti, T., Lecrenier, N., and Purnelle, B. (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae, FEBS Lett., 440, 325-331, https://doi.org/10.1016/S0014-5793(98)01467-7.

    Article  CAS  PubMed  Google Scholar 

  6. Lipinski, K. A., Kaniak-Golik, A., and Golik, P. (2010) Maintenance and expression of the S. cerevisiae mitochondrial genome – from genetics to evolution and systems biology, Biochim. Biophys. Acta, 1797, 1086-1098, https://doi.org/10.1016/j.bbabio.2009.12.019.

    Article  CAS  PubMed  Google Scholar 

  7. Derbikova, K. S., Levitsky, S. A., Chicherin, I. V., Vinogradova, E. N., and Kamenski, P. A. (2018) Activation of yeast mitochondrial translation: who is in charge? Biochemistry (Moscow), 83, 87-97, https://doi.org/10.1134/S0006297918020013.

    Article  CAS  Google Scholar 

  8. Zamudio-Ochoa, A., Camacho-Villasana, Y., García-Guerrero, A. E., Pérez-Martínez, X. (2014) The Pet309 pentatricopeptide repeat motifs mediate efficient binding to the mitochondrial COX1 transcript in yeast, RNA Biol., 11, 953-967, https://doi.org/10.4161/rna.29780.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Manthey, G. M., and McEwen, J. E. (1995) The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae, EMBO J., 14, 4031-4043, https://doi.org/10.1002/j.1460-2075.1995.tb00074.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hillman, G. A., and Henry, M. F. (2019) The yeast protein Mam33 functions in the assembly of the mitochondrial ribosome, J. Biol. Chem., 294, 9813-9829, https://doi.org/10.1074/jbc.RA119.008476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Silva, D., Poliquin, S., Zeng, R., Zamudio-Ochoa, A., Marrero, N., et al. (2017) The DEAD-box helicase Mss116 plays distinct roles in mitochondrial ribogenesis and mRNA-specific translation, Nucleic Acids Res., 45, 6628-6643, https://doi.org/10.1093/nar/gkx426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Perez-Martinez, X., Broadley, S. A., and Fox, T. D. (2003) Mss51p promotes mitochondrial Cox1p synthesis and interacts with newly synthesized Cox1p, EMBO J., 22, 5951-5961, https://doi.org/10.1093/emboj/cdg566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perez-Martinez, X., Butler, C. A., Shingu-Vazquez, M., and Fox, T. D. (2009) Dual functions of Mss51 couple synthesis of Cox1 to assembly of cytochrome c oxidase in Saccharomyces cerevisiae mitochondria, Mol. Biol. Cell, 20, 4371-4380, https://doi.org/10.1091/mbc.E09-06-0522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Soto, I. C., Fontanesi, F., Myers, R. S., Hamel, P., and Barrientos, A. (2012) A heme-sensing mechanism in the translational regulation of mitochondrial cytochrome c oxidase biogenesis, Cell Metab., 16, 801-813, https://doi.org/10.1016/j.cmet.2012.10.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Khalimonchuk, O., Bestwick, M., Meunier, B., Watts, T. C., and Winge, D. R. (2010) Formation of the redox cofactor centers during cox1 maturation in yeast cytochrome oxidase, Mol. Cell. Biol., 30, 1004-1017, https://doi.org/10.1128/mcb.00640-09.

    Article  CAS  PubMed  Google Scholar 

  16. Scheffler, I. E. (2007) Mitochondria: Second Edition, John Wiley and Sons, https://doi.org/10.1002/9780470191774.

  17. Gissi, C., Iannelli, F., and Pesole, G. (2008) Evolution of the mitochondrial genome of Metazoa as exemplified by comparison of congeneric species, Heredity (Edinb), 101, 301-320, https://doi.org/10.1038/hdy.2008.62.

    Article  CAS  Google Scholar 

  18. Christian, B. E., Spremulli, L. L. (2010) Preferential selection of the 5′-terminal start codon on leaderless mRNAs by mammalian mitochondrial ribosomes, J. Biol. Chem., 285, 28379-28386, https://doi.org/10.1074/jbc.M110.149054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kummer, E., Leibundgut, M., Rackham, O., Lee, R. G., Boehringer, D., et al. (2018) Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM, Nature, 560, 263-267, https://doi.org/10.1038/s41586-018-0373-y.

    Article  CAS  PubMed  Google Scholar 

  20. Jones, C. N., Wilkinson, K. A., Hung, K. T., Weeks, K. M., and Spremulli, L. L. (2008) Lack of secondary structure characterizes the 5′-ends of mammalian mitochondrial mRNAs, RNA, 14, 862-871, https://doi.org/10.1261/rna.909208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weraarpachai, W., Antonicka, H., Sasarman, F., Seeger, J., Schrank, B., et al. (2009) Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome, Nat. Genet., 41, 833-837, https://doi.org/10.1038/ng.390.

    Article  CAS  PubMed  Google Scholar 

  22. Richman, T. R., Spahr, H., Ermer, J. A., Davies, S. M. K., Viola, H. M., et al. (2016) Loss of the RNA-binding protein TACO1 causes late-onset mitochondrial dysfunction in mice, Nat. Commun., 7, 11884, https://doi.org/10.1038/ncomms11884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sferruzza, G., Del Bondio, A., Citterio, A., Vezzulli, P., Guerrieri, S., et al. (2021) U-fiber leukoencephalopathy due to a novel mutation in the TACO1 gene, Neurol. Genet., 7, e573, https://doi.org/10.1212/nxg.0000000000000573.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Szklarczyk, R., Wanschers, B. F. J., Cuypers, T. D., Esseling, J. J., Riemersma, M., et al. (2012) Iterative orthology prediction uncovers new mitochondrial proteins and identifies C12orf62 as the human ortholog of COX14, a protein involved in the assembly of cytochrome c oxidase, Genome Biol., 13, R12, https://doi.org/10.1186/gb-2012-13-2-r12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moyer, A. L., and Wagner, K. R. (2015) Mammalian Mss51 is a skeletal muscle-specific gene modulating cellular metabolism, J. Neuromuscul. Dis., 2, 371-385, https://doi.org/10.3233/JND-150119.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fujita, R., Yoshioka, K., Seko, D., Suematsu, T., Mitsuhashi, S., et al. (2018) Zmynd17 controls muscle mitochondrial quality and whole-body metabolism, FASEB J., 32, 5012-5025, https://doi.org/10.1096/fj.201701264R.

    Article  CAS  PubMed  Google Scholar 

  27. Rovira Gonzalez, Y. I., Moyer, A. L., LeTexier, N. J., Bratti, A. D., Feng, S., et al. (2019) Mss51 deletion enhances muscle metabolism and glucose homeostasis in mice, JCI Insight, 4, e122247, https://doi.org/10.1172/jci.insight.122247.

    Article  PubMed Central  Google Scholar 

  28. Rovira Gonzalez, Y. I., Moyer, A. L., LeTexier, N. J., Bratti, A. D., Feng, S., et al. (2021) Mss51 deletion increases endurance and ameliorates histopathology in the mdx mouse model of Duchenne muscular dystrophy, FASEB J., 35, e21276, https://doi.org/10.1096/fj.202002106RR.

    Article  CAS  PubMed  Google Scholar 

  29. Chicherin, I. V., Baleva, M. V., Levitskii, S. A., Dashinimaev, E. B., Krasheninnikov, I. A., and Kamenski, P. (2020) Initiation factor 3 is dispensable for mitochondrial translation in cultured human cells, Sci. Rep., 10, 7110, https://doi.org/10.1038/s41598-020-64139-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., et al. (2013) Targeted genome modification of crop plants using a CRISPR-Cas system, Nat. Biotechnol., 31, 686-688, https://doi.org/10.1038/nbt.2650.

    Article  CAS  PubMed  Google Scholar 

  31. Wittig, I., Braun, H.-P., and Schägger, H. (2006) Blue native PAGE, Nat. Protoc., 1, 418-428, https://doi.org/10.1038/nprot.2006.62.

    Article  CAS  PubMed  Google Scholar 

  32. Jha, P., Wang, X., Auwerx, J. (2016) Analysis of mitochondrial respiratory chain supercomplexes using blue native polyacrylamide gel electrophoresis (BN-PAGE), in Curr. Protoc. Mouse Biol., John Wiley & Sons, Inc., Hoboken, NJ, USA, pp. 1-14, https://doi.org/10.1002/9780470942390.mo150182.

  33. Schafer, E., Seelert, H., Reifschneider, N. H., Krause, F., Dencher, N. A., and Vonck, J. (2006) Architecture of active mammalian respiratory chain supercomplexes, J. Biol. Chem., 281, 15370-15375, https://doi.org/10.1074/jbc.M513525200.

    Article  CAS  PubMed  Google Scholar 

  34. Kuzmenko, A., Atkinson, G. C., Levitskii, S., Zenkin, N., Tenson, T., et al. (2014) Mitochondrial translation initiation machinery: conservation and diversification, Biochimie, 100, 132-140, https://doi.org/10.1016/j.biochi.2013.07.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Herrmann, J. M., Woellhaf, M. W., and Bonnefoy, N. (2013) Control of protein synthesis in yeast mitochondria: the concept of translational activators, Biochim. Biophys. Acta, 1833, 286-294, https://doi.org/10.1016/j.bbamcr.2012.03.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Scientific equipment used in this work was purchased through the Moscow State University Development program. The authors of this study are members of the Scientific and Education School “Molecular technologies of live systems and synthetic biology” at the Moscow State University.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-07002; experimental studies) and the State Budget Project of the Moscow State University 24-2-21 (bioinformatics studies).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey A. Levitskii.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baleva, M.V., Piunova, U.E., Chicherin, I.V. et al. Yeast Translational Activator Mss51p and Human ZMYND17 – Two Proteins with a Common Origin, but Different Functions. Biochemistry Moscow 86, 1151–1161 (2021). https://doi.org/10.1134/S0006297921090108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921090108

Keywords

Navigation