Skip to main content
Log in

Normalization of Calcium Balance in Striatal Neurons in Huntington’s Disease: Sigma 1 Receptor as a Potential Target for Therapy

  • MINI-REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Huntington’s disease (HD) is a neurodegenerative, dominantly inherited genetic disease caused by expansion of the polyglutamine tract in the huntingtin gene. At the cellular level, HD is characterized by the accumulation of mutant huntingtin protein in brain cells, resulting in the development of the HD phenotype, which includes mental disorders, decreased cognitive abilities, and progressive motor impairments in the form of chorea. Despite numerous studies, no unambigous connection between the accumulation of mutant protein and selective death of striatal neurons has yet been established. Recent studies have shown impairments in the calcium homeostasis in striatal neurons in HD. These cells are extremely sensitive to changes in the cytoplasmic concentration of calcium and its excessive increase leads to their death. One of the possible ways to normalize the balance of calcium in striatal neurons is through the sigma 1 receptor (S1R), which act as a calcium sensor that also exhibits modulating chaperone activity upon the cell stress observed during the development of many neurodegenerative diseases. The fact that S1R is a ligand-operated protein makes it a new promising molecular target for the development of drug therapy of HD based on the agonists of this receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum

HD:

Huntington’s disease

IP3 :

inositol trisphosphate

IP3R1:

inositol trisphosphate receptor type 1

Htt:

huntingtin

mHtt:

mutant huntingtin

MSN:

medium spiny neuron

NMDAR:

N-methyl-D-aspartate receptor

S1R:

sigma 1 receptor

SOCE:

store operated calcium entry

STIM:

stromal interaction molecule

VGCC:

voltage-gated calcium channel

References

  1. Walker, F. O. (2007) Huntington’s disease, Semin. Neurol., 27, 143-150, https://doi.org/10.1055/s-2007-971176.

    Article  PubMed  Google Scholar 

  2. Artamonov, D. N., Korzhova, V. V., Wu, J., Rybalchenko, P. D., Im, C., et al. (2013) Characterization of synaptic dysfunction in an in vitro corticostriatal model system of Huntington’s disease, Biol. Membrany, 30, 276-288, https://doi.org/10.7868/S0233475513040026.

    Article  CAS  Google Scholar 

  3. MacDonald, Me E., Ambrose, C. M., Duyao, M. P., Myers, R. H., Lin, C., et al. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group, Cell, 72, 971-983, https://doi.org/10.1016/0092-8674(93)90585-e.

    Article  Google Scholar 

  4. Strong, T. V., Tagle, D. A., Valdes, J. M., Elmer, L. W., et al. (1993) Widespread expression of the human and rat Huntington’s disease gene in brain and nonneural tissues, Nat. Genet., 5, 259-265, https://doi.org/10.1038/ng1193-259.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, M. W., Chelliah, Y., Kim, S. W., Otwinowski, Z., and Bezprozvanny, I. (2009) Secondary structure of Huntingtin amino-terminal region, Structure, 17, 1205-1212, https://doi.org/10.1016/j.str.2009.08.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, Y. E., Hosp, F., Frottin, F., Ge, H., Mann, M., et al. (2016) Soluble oligomers of PolyQ-expanded huntingtin target a multiplicity of key cellular factors, Mol. Cell, 63, 951-964, https://doi.org/10.1016/j.molcel.2016.07.022.

    Article  CAS  PubMed  Google Scholar 

  7. Leitman, J., Ulrich Hartl, F., and Lederkremer, G. Z. (2013) Soluble forms of polyQ-expanded huntingtin rather than large aggregates cause endoplasmic reticulum stress, Nat. Commun., 4, 2753, https://doi.org/10.1038/ncomms3753.

    Article  CAS  PubMed  Google Scholar 

  8. Leitman, J., Barak, B., Benyair, R., Shenkman, M., Ashery, U., et al. (2014) ER stress-induced eIF2-alpha phosphorylation underlies sensitivity of striatal neurons to pathogenic huntingtin, PLoS One, 9, e90803, https://doi.org/10.1371/journal.pone.0090803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lajoie, P., and Snapp, E. L. (2010) Formation and toxicity of soluble polyglutamine oligomers in living cells, PLoS One, 5, e15245, https://doi.org/10.1371/journal.pone.0015245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reddy, P. H., and Shirendeb, U. P. (2012) Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington’s disease, Biochim. Biophys. Acta, 1822, 101-110, https://doi.org/10.1016/j.bbadis.2011.10.016.

    Article  CAS  PubMed  Google Scholar 

  11. McAdam, R. L., Morton, A., Gordon, S. L., Alterman, J. F., Khvorova, A., et al. (2020) Loss of huntingtin function slows synaptic vesicle endocytosis in striatal neurons from the htt(Q140/Q140) mouse model of Huntington’s disease, Neurobiol. Dis., 134, 104637, https://doi.org/10.1016/j.nbd.2019.104637.

    Article  CAS  PubMed  Google Scholar 

  12. Smith, R., Brundin, P., and Li, J. Y. (2005) Synaptic dysfunction in Huntington’s disease: a new perspective, Cell. Mol. Life Sci., 62, 1901-1912, https://doi.org/10.1007/s00018-005-5084-5.

    Article  CAS  PubMed  Google Scholar 

  13. Schrank, S., Barrington, N., and Stutzmann, G. E. (2020) Calcium-handling defects and neurodegenerative disease, Cold Spring Harb. Perspect. Biol., 12, https://doi.org/10.1101/cshperspect.a035212.

    Article  PubMed  Google Scholar 

  14. Tang, T. S., Slow, E., Lupu, V., Stavrovskaya, I. G., Sugimori, M., et al. (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease, Proc. Natl. Acad. Sci. USA, 102, 2602-2607, https://doi.org/10.1073/pnas.0409402102.

    Article  CAS  PubMed  Google Scholar 

  15. Parekh, A. B., and Putney, J. W., Jr. (2005) Store-operated calcium channels, Physiol. Rev., 85, 757-810, https://doi.org/10.1152/physrev.00057.2003.

    Article  CAS  PubMed  Google Scholar 

  16. Sun, S., Zhang, H., Liu, J., Popugaeva, E., Xu, N. J., et al. (2014) Reduced synaptic STIM2 expression and impaired store-operated calcium entry cause destabilization of mature spines in mutant presenilin mice, Neuron, 82, 79-93, https://doi.org/10.1016/j.neuron.2014.02.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu, J., Ryskamp, D., Birnbaumer, L., and Bezprozvanny, I. (2018) Inhibition of TRPC1-dependent store-operated calcium entry improves synaptic stability and motor performance in a mouse model of Huntington’s disease, J. Huntingtons Dis., 7, 35-50, https://doi.org/10.3233/JHD-170266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Segal, M., and Korkotian, E. (2014) Endoplasmic reticulum calcium stores in dendritic spines, Front. Neuroanat., 8, 64, https://doi.org/10.3389/fnana.2014.00064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stathopulos, P. B., Zheng, L., and Ikura, M. (2009) Stromal interaction molecule (STIM) 1 and STIM2 calcium sensing regions exhibit distinct unfolding and oligomerization kinetics, J. Biol. Chem., 284, 728-732, https://doi.org/10.1074/jbc.C800178200.

    Article  CAS  PubMed  Google Scholar 

  20. Toescu, E. C., and Verkhratsky, A. (2007) Role of calcium in normal aging and neurodegeneration, Aging Cell, 6, 265, https://doi.org/10.1111/j.1474-9726.2007.00299.x.

    Article  CAS  PubMed  Google Scholar 

  21. Rockabrand, E., Slepko, N., Pantalone, A., Nukala, V. N., Kazantsev, A., et al. (2007) The first 17 amino acids of Huntingtin modulate its sub-cellular localization, aggregation and effects on calcium homeostasis, Hum. Mol. Genet., 16, 61-77, https://doi.org/10.1093/hmg/ddl440.

    Article  CAS  PubMed  Google Scholar 

  22. Ferrante, R. J., Kowall, N. W., Cipolloni, P. B., Storey, E., and Beal, M. F. (1993) Excitotoxin lesions in primates as a model for Huntington’s disease: histopathologic and neurochemical characterization, Exp. Neurol., 119, 46-71, https://doi.org/10.1006/exnr.1993.1006.

    Article  CAS  PubMed  Google Scholar 

  23. Milnerwood, A. J., Gladding, C. M., Pouladi, M. A., Kaufman, A. M., Hines, R. M., et al. (2010) Early increase in extrasynaptic NMDA receptor signaling and expression contributes to phenotype onset in Huntington’s disease mice, Neuron, 65, 178-190, https://doi.org/10.1016/j.neuron.2010.01.008.

    Article  CAS  PubMed  Google Scholar 

  24. Dau, A., Gladding, C. M., Sepers, M. D., and Raymond, L. A. (2014) Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice, Neurobiol. Dis., 62, 533-542, https://doi.org/10.1016/j.nbd.2013.11.013.

    Article  CAS  PubMed  Google Scholar 

  25. Ondo, W. G., Mejia, N. I., and Hunter, C. B. (2007) A pilot study of the clinical efficacy and safety of memantine for Huntington’s disease, Parkinsonism Relat. Disord., 13, 453-454, https://doi.org/10.1016/j.parkreldis.2006.08.005.

    Article  PubMed  Google Scholar 

  26. Tang, T. S., Tu, H., Orban, P. C., Chan, E. Y., Hayden, M. R., and Bezprozvanny, I. (2004) HAP1 facilitates effects of mutant huntingtin on inositol 1,4,5-trisphosphate-induced Ca release in primary culture of striatal medium spiny neurons, Eur. J. Neurosci., 20, 1779-1787, https://doi.org/10.1111/j.1460-9568.2004.03633.x.

    Article  PubMed  Google Scholar 

  27. Glushankova, L. N., Zimina, O. A., Vigont, V. A., Mozhaeva, G. N., Bezprozvanny, I. B., and Kaznacheeva, E. V. (2010) Changes in the store-dependent calcium influx in a cellular model of Huntington’s disease, Dokl. Biol. Sci., 433, 293-295, https://doi.org/10.1134/S0012496610040162.

    Article  CAS  PubMed  Google Scholar 

  28. Wu, J., Shih, H. P., Vigont, V., Hrdlicka, L., Diggins, L., et al. (2011) Neuronal store-operated calcium entry pathway as a novel therapeutic target for Huntington’s disease treatment, Chem. Biol., 18, 777-793, https://doi.org/10.1016/j.chembiol.2011.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Czeredys, M., Maciag, F., Methner, A., and Kuznicki, J. (2017) Tetrahydrocarbazoles decrease elevated SOCE in medium spiny neurons from transgenic YAC128 mice, a model of Huntington’s disease, Biochem. Biophys. Res. Commun., 483, 1194-1205, https://doi.org/10.1016/j.bbrc.2016.08.106.

    Article  CAS  PubMed  Google Scholar 

  30. Wu, J., Ryskamp, D. A., Liang, X., Egorova, P., Zakharova, O., et al. (2016) Enhanced store-operated calcium entry leads to striatal synaptic loss in a Huntington’s disease mouse model, J. Neurosci., 36, 125-141, https://doi.org/10.1523/Jneurosci.1038-15.2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nekrasov, E. D., Vigont, V. A., Klyushnikov, S. A., Lebedeva, O. S., Vassina, E. M., et al. (2016) Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons, Mol. Neurodegener., 11, 27, https://doi.org/10.1186/s13024-016-0092-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, H., Li, Q., Graham, R. K., Slow, E., Hayden, M. R., and Bezprozvanny, I. (2008) Full length mutant huntingtin is required for altered Ca2+ signaling and apoptosis of striatal neurons in the YAC mouse model of Huntington’s disease, Neurobiol. Dis., 31, 80-88, https://doi.org/10.1016/j.nbd.2008.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park, C. Y., Shcheglovitov, A., and Dolmetsch, R. (2010) The CRAC channel activator STIM1 binds and inhibits L-type voltage-gated calcium channels, Science, 330, 101-105, https://doi.org/10.1126/science.1191027.

    Article  CAS  PubMed  Google Scholar 

  34. Cepeda, C., Wu, N., Andre, V. M., Cummings, D. M., and Levine, M. S. (2007) The corticostriatal pathway in Huntington’s disease, Prog. Neurobiol., 81, 253-271, https://doi.org/10.1016/j.pneurobio.2006.11.001.

    Article  CAS  PubMed  Google Scholar 

  35. Chen, S., Yu, C., Rong, L., Li, C. H., Qin, X., Ryu, H., and Park, H. (2018) Altered synaptic vesicle release and Ca2+ influx at single presynaptic terminals of cortical neurons in a knock-in mouse model of Huntington’s disease, Front. Mol. Neurosci., 11, 478, https://doi.org/10.3389/fnmol.2018.00478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Miranda, A. S., Cardozo, P. L., Silva, F. R., de Souza, J. M., Olmo, I. G., et al. (2019) Alterations of calcium channels in a mouse model of Huntington’s disease and neuroprotection by blockage of CaV1 channels, ASN Neuro, 11, 1759091419856811, https://doi.org/10.1177/1759091419856811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joshi, P. R., Wu, N. P., Andre, V. M., Cummings, D. M., Cepeda, C., et al. (2009) Age-dependent alterations of corticostriatal activity in the YAC128 mouse model of Huntington’s disease, J. Neurosci., 29, 2414-2427, https://doi.org/10.1523/JNEUROSCI.5687-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Youle, R. J., and van der Bliek, A. M. (2012) Mitochondrial fission, fusion, and stress, Science, 337, 1062-1065, https://doi.org/10.1126/science.1219855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, J., Moody, J. P., Edgerly, C. K., Bordiuk, O. L., Cormier, K., et al. (2010) Mitochondrial loss, dysfunction and altered dynamics in Huntington’s disease, Hum. Mol. Genet., 19, 3919-3935, https://doi.org/10.1093/hmg/ddq306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Costa, V., Giacomello, M., Hudec, R., Lopreiato, R., Ermak, G., et al. (2010) Mitochondrial fission and cristae disruption increase the response of cell models of Huntington’s disease to apoptotic stimuli, EMBO Mol. Med., 2, 490-503, https://doi.org/10.1002/emmm.201000102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yano, H., Baranov, S. V., Baranova, O. V., Kim, J., Pan, Y., et al. (2014) Inhibition of mitochondrial protein import by mutant huntingtin, Nat. Neurosci., 17, 822-831, https://doi.org/10.1038/nn.3721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Oliveira, J. M., Chen, S., Almeida, S., Riley, R., Goncalves, J., et al. (2006) Mitochondrial-dependent Ca2+ handling in Huntington’s disease striatal cells: effect of histone deacetylase inhibitors, J. Neurosci., 26, 11174-11186, https://doi.org/10.1523/JNEUROSCI.3004-06.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seong, I. S., Ivanova, E., Lee, J. M., Choo, Y. S., Fossale, E., et al. (2005) HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism, Hum. Mol. Genet., 14, 2871-2880, https://doi.org/10.1093/hmg/ddi319.

    Article  CAS  PubMed  Google Scholar 

  44. Choo, Y. S., Johnson, G. V., MacDonald, M., Detloff, P. J., and Lesort, M. (2004) Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release, Hum. Mol. Genet., 13, 1407-1420, https://doi.org/10.1093/hmg/ddh162.

    Article  CAS  PubMed  Google Scholar 

  45. Shirendeb, U., Reddy, A. P., Manczak, M., Calkins, M. J., Mao, P., et al. (2011) Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington’s disease: implications for selective neuronal damage, Hum. Mol. Genet., 20, 1438-1455, https://doi.org/10.1093/hmg/ddr024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Panov, A. V., Gutekunst, C. A., Leavitt, B. R., Hayden, M. R., Burke, J. R., et al. (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines, Nat. Neurosci., 5, 731-736, https://doi.org/10.1038/nn884.

    Article  CAS  PubMed  Google Scholar 

  47. Cherubini, M., Lopez-Molina, L., and Gines, S. (2020) Mitochondrial fission in Huntington's disease mouse striatum disrupts ER-mitochondria contacts leading to disturbances in Ca2+ efflux and Reactive Oxygen Species (ROS) homeostasis, Neurobiol. Dis., 136, 104741, https://doi.org/10.1016/j.nbd.2020.104741.

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt, M. E., Buren, C., Mackay, J. P., Cheung, D., Dal Cengio, L., et al. (2018) Altering cortical input unmasks synaptic phenotypes in the YAC128 cortico-striatal co-culture model of Huntington’s disease, BMC Biol., 16, 58, https://doi.org/10.1186/s12915-018-0526-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koch, E. T., Woodard, C. L., and Raymond, L. A. (2018) Direct assessment of presynaptic modulation of cortico-striatal glutamate release in a Huntington’s disease mouse model, J. Neurophysiol., 120, 3077-3084, https://doi.org/10.1152/jn.00638.2018.

    Article  CAS  PubMed  Google Scholar 

  50. Mackay, J. P., Buren, C., Smith-Dijak, A. I., Koch, E. T., Zhang, P., et al. (2020) Spontaneous axonal ER Ca2+ waves mediate a shift from action potential-dependent to independent glutamate release in the YAC128 HD-Model, bioRxiv, https://doi.org/10.1101/2020.01.31.929299.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Smith-Dijak, A. I., Nassrallah, W. B., Zhang, L. Y. J., Geva, M., Hayden, M. R., and Raymond, L. A. (2019) Impairment and restoration of homeostatic plasticity in cultured cortical neurons from a mouse model of Huntington’s disease, Front. Cell Neurosci., 13, 209, https://doi.org/10.3389/fncel.2019.00209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Parievsky, A., Moore, C., Kamdjou, T., Cepeda, C., Meshul, C. K., and Levine, M. S. (2017) Differential electrophysiological and morphological alterations of thalamostriatal and corticostriatal projections in the R6/2 mouse model of Huntington’s disease, Neurobiol. Dis., 108, 29-44, https://doi.org/10.1016/j.nbd.2017.07.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kolodziejczyk, K., and Raymond, L. A. (2016) Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington’s disease mouse model, Neurobiol. Dis., 86, 62-74, https://doi.org/10.1016/j.nbd.2015.11.020.

    Article  CAS  PubMed  Google Scholar 

  54. Hayashi, T., and Su, T. P. (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca2+ signaling and cell survival, Cell, 131, 596-610, https://doi.org/10.1016/j.cell.2007.08.036.

    Article  CAS  PubMed  Google Scholar 

  55. Mori, T., Hayashi, T., Hayashi, E., and Su, T. P. (2013) Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival, PLoS One, 8, e76941, https://doi.org/10.1371/journal.pone.0076941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Srivats, S., Balasuriya, D., Pasche, M., Vistal, G., Edwardson, J. M., et al. (2016) Sigma1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1, J. Cell Biol., 213, 65-79, https://doi.org/10.1083/jcb.201506022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brailoiu, G. C., Deliu, E., Console-Bram, L. M., Soboloff, J., Abood, M. E., et al. (2016) Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: critical role for sigma-1 receptors, Biochem. J., 473, 1-5, https://doi.org/10.1042/BJ20150934.

    Article  CAS  PubMed  Google Scholar 

  58. Kourrich, S., Su, T. P., Fujimoto, M., and Bonci, A. (2012) The sigma-1 receptor: roles in neuronal plasticity and disease, Trends Neurosci., 35, 762-771, https://doi.org/10.1016/j.tins.2012.09.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tchedre, K. T., Huang, R. Q., Dibas, A., Krishnamoorthy, R. R., Dillon, G. H., and Yorio, T. (2008) Sigma-1 receptor regulation of voltage-gated calcium channels involves a direct interaction, Invest. Ophthalmol. Vis. Sci., 49, 4993-5002, https://doi.org/10.1167/iovs.08-1867.

    Article  PubMed  Google Scholar 

  60. Zhang, K., Zhao, Z., Lan, L., Wei, X., Wang, L., Liu, X., Yan, H., and Zheng, J. (2017) Sigma-1 receptor plays a negative modulation on N-type calcium channel, Front. Pharmacol., 8, 302, https://doi.org/10.3389/fphar.2017.00302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Martina, M., Turcotte, M. E., Halman, S., and Bergeron, R. (2007) The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus, J. Physiol., 578, 143-157, https://doi.org/10.1113/jphysiol.2006.116178.

    Article  CAS  PubMed  Google Scholar 

  62. Klette, K. L., Lin, Y., Clapp, L. E., DeCoster, M. A., Moreton, J. E., and Tortella, F. C. (1997) Neuroprotective sigma ligands attenuate NMDA and trans-ACPD-induced calcium signaling in rat primary neurons, Brain Res., 756, 231-240, https://doi.org/10.1016/s0006-8993(97)00142-x.

    Article  CAS  PubMed  Google Scholar 

  63. Al-Saif, A., Al-Mohanna, F., and Bohlega, S. (2011) A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis, Ann. Neurol., 70, 913-919, https://doi.org/10.1002/ana.22534.

    Article  CAS  PubMed  Google Scholar 

  64. Tagashira, H., Shinoda, Y., Shioda, N., and Fukunaga, K. (2014) Methyl pyruvate rescues mitochondrial damage caused by SIGMAR1 mutation related to amyotrophic lateral sclerosis, Biochim. Biophys. Acta, 1840, 3320-3334, https://doi.org/10.1016/j.bbagen.2014.08.012.

    Article  CAS  PubMed  Google Scholar 

  65. Tsai, S. Y., Hayashi, T., Harvey, B. K., Wang, Y., Wu, W. W., et al. (2009) Sigma-1 receptors regulate hippocampal dendritic spine formation via a free radical-sensitive mechanism involving Rac1xGTP pathway, Proc. Natl. Acad. Sci. USA, 106, 22468-22473, https://doi.org/10.1073/pnas.0909089106.

    Article  PubMed  Google Scholar 

  66. Tchedre, K. T., and Yorio, T. (2008) Sigma-1 receptors protect RGC-5 cells from apoptosis by regulating intracellular calcium, Bax levels, and caspase-3 activation, Invest. Ophthalmol. Vis. Sci., 49, 2577-2588, https://doi.org/10.1167/iovs.07-1101.

    Article  PubMed  Google Scholar 

  67. Bauer, P. O., Hudec, R., Ozaki, S., Okuno, M., Ebisui, E., et al. (2011) Genetic ablation and chemical inhibition of IP3R1 reduce mutant huntingtin aggregation, Biochem. Biophys. Res. Commun., 416, 13-17, https://doi.org/10.1016/j.bbrc.2011.10.096.

    Article  CAS  PubMed  Google Scholar 

  68. Miki, Y., Tanji, K., Mori, F., and Wakabayashi, K. (2015) Sigma-1 receptor is involved in degradation of intranuclear inclusions in a cellular model of Huntington’s disease, Neurobiol. Dis., 74, 25-31, https://doi.org/10.1016/j.nbd.2014.11.005.

    Article  CAS  PubMed  Google Scholar 

  69. Ryskamp, D., Wu, J., Geva, M., Kusko, R., Grossman, I., Hayden, M., and Bezprozvanny, I. (2017) The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington’s disease, Neurobiol. Dis., 97, 46-59, https://doi.org/10.1016/j.nbd.2016.10.006.

    Article  CAS  PubMed  Google Scholar 

  70. Ryskamp, D. A., Korban, S., Zhemkov, V., Kraskovskaya, N., and Bezprozvanny, I. (2019) Neuronal sigma-1 receptors: signaling functions and protective roles in neurodegenerative diseases, Front. Neurosci., 13, 862, https://doi.org/10.3389/fnins.2019.00862.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Eddings, C. R., Arbez, N., Akimov, S., Geva, M., Hayden, M. R., and Ross, C. A. (2019) Pridopidine protects neurons from mutant-huntingtin toxicity via the sigma-1 receptor, Neurobiol. Dis., 129, 118-129, https://doi.org/10.1016/j.nbd.2019.05.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sahlholm, K., Arhem, P., Fuxe, K., and Marcellino, D. (2013) The dopamine stabilizers ACR16 and (-)-OSU6162 display nanomolar affinities at the sigma-1 receptor, Mol. Psychiatry, 18, 12-14, https://doi.org/10.1038/mp.2012.3.

    Article  CAS  PubMed  Google Scholar 

  73. Brimson, J. M., Brimson, S., Chomchoei, C., and Tencomnao, T. (2020) Using sigma-ligands as part of a multi-receptor approach to target diseases of the brain, Expert Opin. Ther. Targets, 24, 1009-1028, https://doi.org/10.1080/14728222.2020.1805435.

    Article  CAS  PubMed  Google Scholar 

  74. Grachev, I. D., Meyer, P. M., Becker, G. A., Bronzel, M., Marsteller, D., et al. (2020) Sigma-1 and dopamine D2/D3 receptor occupancy of pridopidine in healthy volunteers and patients with Huntington’s disease: a [(18)F] fluspidine and [(18)F] fallypride PET study, Eur. J. Nucl. Med. Mol. Imaging, https://doi.org/10.1007/s00259-020-05030-3.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-15-00184, “The role of calcium in the pathogenesis of Huntington’s disease” section) and by the Russian Foundation for Basic Research (project no. 18-34-00994, “The role of the sigma 1 receptor as a modulator of calcium balance in neurons in Huntington’s disease” section).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina A. Kraskovskaya.

Ethics declarations

The authors declare no conflict of interest. This article does not describe any research involving humans or animals as objects.

Additional information

Published in Russian in Biokhimiya, 2021, Vol. 86, No. 4, pp. 554-563, https://doi.org/10.31857/S0320972521040072.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraskovskaya, N.A., Bezprozvanny, I.B. Normalization of Calcium Balance in Striatal Neurons in Huntington’s Disease: Sigma 1 Receptor as a Potential Target for Therapy. Biochemistry Moscow 86, 471–479 (2021). https://doi.org/10.1134/S0006297921040076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921040076

Keywords

Navigation