Skip to main content
Log in

AML-Associated Mutations in DNA Methyltransferase DNMT3A

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In mammals, DNA methylation is an essential epigenetic modification necessary for the maintenance of genome stability, regulation of gene expression, and other processes. Carcinogenesis is accompanied by multiple changes in the DNA methylation pattern and DNA methyltransferase (DNMT) genes; these changes are often associated with poor disease prognosis. Human DNA methyltransferase DNMT3A is responsible for de novo DNA methylation. Missense mutations in the DNMT3A gene occur frequently at the early stages of tumor development and are often observed in hematologic malignances, especially in acute myeloid leukemia (AML), with a prevalence of the R882H mutation. This mutation is the only one that has been extensively studied using both model DNA substrates and cancer cell lines. Biochemical characterization of other DNMT3A mutants is necessary to assess their potential effects on the DNMT3A functioning. In this review, we describe DNMT3A mutations identified in AML with special emphasis on the missense mutations in the DNMT3A catalytic domain. The impact of R882H and less common missense mutations on the DNMT3A activity toward model DNA substrates and in cancer cell lines is discussed together with the underlying molecular mechanisms. Understanding general features of these mechanisms will be useful for further development of novel approaches for early diagnostics of hematologic diseases and personalized cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Abbreviations

AML:

acute myeloid leukemia

ADD domain:

ATRX-DNMT3A/3B-DNMT3L domain

AdoMet:

S-adenosyl-L-methionine

AMLL:

acute mixed-lineage leukemia

CD:

catalytic domain

DNMT:

DNA methyltransferase

PWWP domain:

Pro-Trp-Trp-Pro domain

MDS:

myelodysplastic syndrome

TRD:

target recognition domain

References

  1. Jurkowska, R. Z., Jurkowski, T. P., and Jeltsch, A. (2011) Structure and function of mammalian DNA methyltransferases, Chembiochem, 12, 206-222, https://doi.org/10.1002/cbic.201000195.

    Article  CAS  PubMed  Google Scholar 

  2. Bird, A. (2002) DNA methylation patterns and epigenetic memory, Genes Dev., 16, 6-21, https://doi.org/10.1101/gad.947102.

    Article  CAS  PubMed  Google Scholar 

  3. Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond, Nat. Rev. Genet., 13, 484-492, https://doi.org/10.1038/nrg3230.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, W., and Xu, J. (2017) DNA methyltransferases and their roles in tumorigenesis, Biomarker Res., 5, 1-7, https://doi.org/10.1186/s40364-017-0081-z.

    Article  Google Scholar 

  5. Ehrlich, M. (2019) DNA hypermethylation in disease: mechanisms and clinical relevance, Epigenetics, 14, 1141-1163, https://doi.org/10.1080/15592294.2019.1638701.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hamidi, T., Singh, A. K., and Chen, T. (2015) Genetic alterations of DNA methylation machinery in human diseases, Epigenomics, 7, 247-265, https://doi.org/10.2217/epi.14.80.

    Article  CAS  PubMed  Google Scholar 

  7. Robertson, K. D. (2005) DNA methylation and human disease, Nat. Rev. Genet., 6, 597-610, https://doi.org/10.1038/nrg1655.

    Article  CAS  PubMed  Google Scholar 

  8. Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., et al. (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discov., 2, 401-404, https://doi.org/10.1158/2159-8290.CD-ITI12-05.

    Article  PubMed  Google Scholar 

  9. O’Brien, E. C., Brewin, J., and Chevassut, T. (2014) DNMT3A: the DioNysian MonsTer of acute myeloid leukaemia, Ther. Adv. Hematol., 5, 187-196, https://doi.org/10.1177/2040620714554538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ley, T. J., Ding, L., Walter, M. J., McLellan, M. D., Lamprecht, T., et al. (2010) DNMT3A mutations in acute myeloid leukemia, N. Engl. J. Med., 363, 2424-2433, https://doi.org/10.1056/NEJMoa1005143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun, Y., Shen, H., Xu, T., Yang, Z., Qiu, H., et al. (2016) Persistent DNMT3A mutation burden in DNMT3A mutated adult cytogenetically normal acute myeloid leukemia patients in long-term remission, Leuk. Res., 49, 102-107, https://doi.org/10.1016/j.leukres.2016.09.001.

    Article  CAS  PubMed  Google Scholar 

  12. Hou, H. A., Kuo, Y. Y., Liu, C. Y., Chou, W. C., Lee, M. C., et al. (2012) DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications, Blood, 119, 559-568, https://doi.org/10.1182/blood-2011-07-369934.

    Article  CAS  PubMed  Google Scholar 

  13. Russler-Germain, D. A., Spencer, D. H., Young, M. A., Lamprecht, T. L., Miller, C. A., et al. (2014) The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers, Cancer Cell, 25, 442-454, https://doi.org/10.1016/j.ccr.2014.02.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Emperle, M., Dukatz, M., Kunert, S., Holzer, K., Rajavelu, A., et al. (2018) The DNMT3A R882H mutation does not cause dominant negative effects in purified mixed DNMT3A/R882H complexes, Sci. Rep., 8, 13242-13251, https://doi.org/10.1038/s41598-018-31635-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Emperle, M., Rajavelu, A., Kunert, S., Arimondo, P. B., Reinhardt, R., et al. (2018) The DNMT3A R882H mutant displays altered flanking sequence preferences, Nucleic Acids Res., 46, 3130-3139, https://doi.org/10.1093/nar/gky168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nguyen, T. V., Yao, S., Wang, Y., Rolfe, A., Selvaraj, A., et al. (2019) The R882H DNMT3A hotspot mutation stabilizes the formation of large DNMT3A oligomers with low DNA methyltransferase activity, J. Biol. Chem., 294, 16966-16977, https://doi.org/10.1074/jbc.RA119.010126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anteneh, H., Fang, J., and Song, J. (2020) Structural basis for impairment of DNA methylation by the DNMT3A R882H mutation, Nat. Commun., 11, 2294-2306, https://doi.org/10.1038/s41467-020-16213-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, T., and Li, E. (2004) Structure and function of eukaryotic DNA methyltransferases, Curr. Top. Dev. Biol., 60, 55-89, https://doi.org/10.1016/S0070-2153(04)60003-2.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, X., and Blumenthal, R. M. (2008) Mammalian DNA methyltransferases: a structural perspective, Structure, 16, 341-350, https://doi.org/10.1016/j.str.2008.01.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chédin, F. (2011) The DNMT3 family of mammalian de novo DNA methyltransferases, Prog. Mol. Biol. Transl. Sci., 101, 255-285, https://doi.org/10.1016/B978-0-12-387685-0.00007-X.

    Article  CAS  PubMed  Google Scholar 

  21. Gowher, H., and Jeltsch, A. (2018) Mammalian DNA methyltransferases: new discoveries and open questions, Biochem. Soc. Trans., 46, 1191-1202, https://doi.org/10.1042/BST20170574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ravichandran, M., Jurkowska, R. Z., and Jurkowski, T. P. (2018) Target specificity of mammalian DNA methylation and demethylation machinery, Org. Biomol. Chem., 16, 1419-1435, https://doi.org/10.1039/c7ob02574b.

    Article  CAS  PubMed  Google Scholar 

  23. Posfai, J., Bhagwat, A. S., Posfai, G., and Roberts, R. J. (1989) Predictive motifs derived from cytosine methyltransferases, Nucleic Acids Res., 17, 2421-2435, https://doi.org/10.1093/nar/17.7.2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gowher, H., Liebert, K., Hermann, A., Xu, G., and Jeltsch, A. (2005) Mechanism of stimulation of catalytic activity of Dnmt3A and Dnmt3B DNA-(cytosineC5)-methyltransferases by Dnmt3L, J. Biol. Chem., 280, 13341-13348, https://doi.org/10.1074/jbc.M413412200.

    Article  CAS  PubMed  Google Scholar 

  25. Lin, N., Fu, W., Zhao, Ch., Li, B., Yan, X., and Li, Y. (2017) Biologico-clinical significance of DNMT3A variants expression in acute myeloid leukemia, Biochem. Biophys. Res. Commun., 494, 270-277, https://doi.org/10.1016/j.bbrc.2017.10.041.

    Article  CAS  PubMed  Google Scholar 

  26. Klimasauskas, S., Kumar, S., Roberts, R. J., and Cheng, X. (1994) HhaI methyltransferase flips its target base out of the DNA helix, Cell, 76, 357-369, https://doi.org/10.1016/0092-8674(94)90342-5.

    Article  CAS  PubMed  Google Scholar 

  27. Gromova, E. S., and Khoroshaev, A. V. (2003) Prokaryotic DNA methyltransferases: structure and mechanism of interaction with DNA, Mol. Biol., 37, 260-272, https://doi.org/10.1023/A:1023301923025.

    Article  CAS  Google Scholar 

  28. Jia, D., Jurkowska, R. Z., Zhang, X., Jeltsch, A., and Cheng, X. (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation, Nature, 449, 248-251, https://doi.org/10.1038/nature06146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Z. M., Lu, R., Wang, P., Yu, Y., Chen, D., et al. (2018) Structural basis for DNMT3A-mediated de novo DNA methylation, Nature, 554, 387-391, https://doi.org/10.1038/nature25477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Holz-Schietinger, C., Matje, D. M., Harrison, M. F., and Reich, N. O. (2011) Oligomerization of DNMT3A controls the mechanism of de novo DNA methylation, J. Biol. Chem., 286, 41479-41488, https://doi.org/10.1074/jbc.M111.284687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gros, C., Fahy, J., Halby, L., Dufau, I., Erdmann, A., et al. (2012) DNA methylation inhibitors in cancer: recent and future approaches, Biochimie, 94, 2280-2296, https://doi.org/10.1016/j.biochi.2012.07.025.

    Article  CAS  PubMed  Google Scholar 

  32. Heuser, M., Yun, H., and Thol, F. (2017) Epigenetics in myelodysplastic syndromes, Semin. Cancer Biol., 51, 170-179, https://doi.org/10.1016/j.semcancer.2017.07.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Figueroa, M. E., Lugthart, S., Li, Y., Erpelinck-Verschueren, C., Deng, X., et al. (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia, Cancer Cell, 17, 13-27, https://doi.org/10.1016/j.ccr.2009.11.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan, X. J., Xu, J., Gu, Z. H., Pan, C. M., Lu, G., et al. (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia, Nat. Genet., 43, 309-315, https://doi.org/10.1038/ng.788.

    Article  CAS  PubMed  Google Scholar 

  35. Ponciano-Gómez, A., Martínez-Tovar, A., Vela-Ojeda, J., Olarte-Carrillo, I., Centeno-Cruz, F., and Garrido, E. (2017) Mutations in TET2 and DNMT3A genes are associated with changes in global and gene-specific methylation in acute myeloid leukemia, Tumour Biol., 39, 1-12, https://doi.org/10.1177/1010428317732181.

    Article  CAS  Google Scholar 

  36. Jin, B., and Robertson, K. D. (2013) DNA methyltransferases, DNA damage repair, and cancer, in Epigenetic Alterations in Oncogenesis. Advances in Experimental Medicine and Biology (Karpf, A., eds.) Vol. 754, Springer, New York, NY, https://doi.org/10.1007/978-1-4419-9967-2_1.

  37. Yang, L., Rau, R., and Goodell, M. A. (2015) DNMT3A in haematological malignancies, Nat. Rev. Cancer, 15, 152-165, https://doi.org/10.1038/nrc3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Belle, R., Kawamura, A., and Arimondo, P. (2019) Chemical compounds targeting DNA methylation and hydroxymethylation, in Chemical Epigenetics, Springer Nature, Cham, pp. 255-286.

  39. Spencer, D. H., Russler-Germain, D. A., Ketkar, S., Helton, N. M., Lamprecht, T. L., et al. (2017) CpG island hypermethylation mediated by DNMT3A is a consequence of AML progression, Cell, 168, 1-16, https://doi.org/10.1016/j.cell.2017.01.021.

    Article  CAS  Google Scholar 

  40. He, D., Wang, X., Zhang, Y., Zhao, J., Han, R., and Dong, Y. (2019) DNMT3A/3B overexpression might be correlated with poor patient survival, hypermethylation and low expression of ESR1/PGR in endometrioid carcinoma: an analysis of The Cancer Genome Atlas, Chin. Med. J. (Engl.), 132, 161-170, https://doi.org/10.1097/CM9.0000000000000054.

    Article  Google Scholar 

  41. Kataoka, I., Funata, S., Nagahama, K., Isogaya, K., Takeuchi, H., et al. (2020) DNMT3A overexpression is associated with aggressive behavior and enteroblastic differentiation of gastric adenocarcinoma, Ann. Diagn. Pathol., 44, 151456-151462, https://doi.org/10.1016/j.anndiagpath.2019.151456.

    Article  PubMed  Google Scholar 

  42. Esteller, M. (2008) Epigenetics in cancer, N. Engl. J. Med., 358, 1148-1159, https://doi.org/10.1056/NEJMra072067.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, Z., Wu, Q., Cheng, J., Qiu, X., Zhang, J., and Fan, H. (2010) Depletion of DNMT3A suppressed cell proliferation and restored PTEN in hepatocellular carcinoma cell, J. Biomed. Biotechnol., 2010, 1-10, https://doi.org/10.1155/2010/737535.

    Article  CAS  Google Scholar 

  44. Butcher, D. T., and Rodenhiser, D. I. (2007) Epigenetic inactivation of BRCA1 is associated with aberrant expression of CTCF and DNA methyltransferase (DNMT3B) in some sporadic breast tumours, Eur. J. Cancer, 43, 210-219, https://doi.org/10.1016/j.ejca.2006.09.002.

    Article  CAS  PubMed  Google Scholar 

  45. Norvil, A. B., Saha, D., Dar, M. S., and Gowher, H. (2019) Effect of disease-associated germline mutations on structure function relationship of DNA methyltransferases, Genes, 10, 369-385, https://doi.org/10.3390/genes10050369.

    Article  CAS  PubMed Central  Google Scholar 

  46. Khrabrova, D. A., Loiko, A. G., Tolkacheva, A. A., Cherepanova, N. A., Zvereva, M. I., et al. (2020) Functional analysis of DNMT3A DNA methyltransferase mutations reported in patients with acute myeloid leukemia, Biomolecules, 10, 8-25, https://doi.org/10.3390/biom10010008.

    Article  CAS  Google Scholar 

  47. Sandoval, J. E., Huang, Y. H., Muise, A., Goodell, M. A., and Reich, N. O. (2019) Mutations in the DNMT3A DNA methyltransferase in AML patients cause both loss and gain of function and differential regulation by protein partners, J. Biol. Chem., 294, 4898-4910, https://doi.org/10.1074/jbc.RA118.006795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holz-Schietinger, C., Doug, M., Matje, S., and Reich, N. O. (2012) Mutations in DNA methyltransferase (DNMT3A) observed in acute myeloid leukemia patients disrupt processive methylation, J. Biol. Chem., 287, 30941-30951, https://doi.org/10.1074/jbc.M112.366625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mayle, A., Yang, L., Rodriguez, B., Zhou, T., Chang, E., et al. (2015) Dnmt3a loss predisposes murine hematopoietic stem cells to malignant transformation, Blood, 125, 629-638, https://doi.org/10.1182/blood-2014-08-594648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eckstein, O. S., Wang, L., Punia, J. N., Kornblau, S. M., Andreeff, M., et al. (2016) Mixed-phenotype acute leukemia (MPAL) exhibits frequent mutations in DNMT3A and activated signaling genes, Exp. Hematol., 44, 740-744, https://doi.org/10.1016/j.exphem.2016.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cole, C. B., Verdoni, A. M., Ketkar, S., Leight, E. R., Russler-Germain, D. A., et al. (2016) PML-RARA requires DNA methyltransferase 3A to initiate acute promyelocytic leukemia, J. Clin. Invest., 126, 85-98, https://doi.org/10.1172/JCI82897.

    Article  PubMed  Google Scholar 

  52. Cole, C. B., Russler-Germain, D. A., Ketkar, S., Verdoni, A. M., Smith, A. M., et al. (2017) Haploinsufficiency for DNA methyltransferase 3A predisposes hematopoietic cells to myeloid malignancies, J. Clin. Invest., 127, 3657-3674, https://doi.org/10.1172/JCI93041.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brunetti, L., Gundry, M. C., and Goodell, M. A. (2017) DNMT3A in leukemia, Cold Spring Harb. Perspect. Med., 7, 1-18, https://doi.org/10.1101/cshperspect.a030320.

    Article  Google Scholar 

  54. Kirsanova, O. V., Cherepanova, N. A., and Gromova, E. S. (2009) Inhibition of C5-cytosine-DNA-methyltransferases, Biochemistry (Moscow), 74, 1175-1186, https://doi.org/10.1134/s0006297909110017.

    Article  CAS  Google Scholar 

  55. Yu, J., Xie, T., Wang, Z., Wang, X., Zeng, S., Kang, Y., and Hou, T. (2019) DNA methyltransferases: emerging targets for the discovery of inhibitors as potent anticancer drugs, Drug Discov. Today, 24, 2323-2331, https://doi.org/10.1016/j.drudis.2019.08.006.

    Article  CAS  PubMed  Google Scholar 

  56. Daher-Reyes, G. S., Merchan, B. M., and Yee, K. (2019) Guadecitabine (SGI-110): an investigational drug for the treatment of myelodysplastic syndrome and acute myeloid leukemia, Expert Opin. Investing. Drugs, 28, 835-849, https://doi.org/10.1080/13543784.2019.1667331.

    Article  CAS  Google Scholar 

  57. Traina, F., Visconte, V., Elson, P., Tabarroki, A., Jankowska, A. M., et al. (2014) Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms, Leukemia, 28, 78-87, https://doi.org/10.1038/leu.2013.269.

    Article  CAS  PubMed  Google Scholar 

  58. Klco, J. M., Spencer, D. H., Lamprecht, T. L., Sarkaria, S. M., Wylie, T., et al. (2013) Genomic impact of transient low-dose decitabine treatment on primary AML cell, Blood, 121, 1633-1643, https://doi.org/10.1182/blood-2012-09-459313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-04-00533-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariya A. Khrabrova.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. This article does not contain description of studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrabrova, D.A., Yakubovskaya, M.G. & Gromova, E.S. AML-Associated Mutations in DNA Methyltransferase DNMT3A. Biochemistry Moscow 86, 307–318 (2021). https://doi.org/10.1134/S000629792103007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629792103007X

Keywords

Navigation