Skip to main content
Log in

Mechanisms of Acinetobacter baumannii Capsular Polysaccharide Cleavage by Phage Depolymerases

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Aerobic gram-negative bacterium Acinetobacter baumannii has recently become one of the most relevant pathogens associated with hospital-acquired infections worldwide. A. baumannii produces a capsule around the cell, which represents a thick viscous layer of structurally variable capsular polysaccharide (CPS). The capsule protects the bacteria against unfavorable environmental factors and biological systems, including bacteriophages and host immune system. Many A. baumannii phages have structural depolymerases (tailspikes) that specifically recognize and digest bacterial CPS. In this work, we studied the interaction of tailspike proteins of four lytic depolymerase-carrying phages with A. baumannii CPS. Depolymerases of three bacteriophages (Fri1, AS12, and BS46) were identified as specific glycosidases that cleave the CPS of A. baumannii strains 28, 1432, and B05, respectively, by the hydrolytic mechanism. The gp54 depolymerase from bacteriophage AP22 was characterized as a polysaccharide lyase that cleaves the CPS of A. baumannii strain 1053 by β-elimination at hexuronic acid (ManNAcA) residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

CPS:

capsular polysaccharide

FucNAc:

2-acetamido-2-deoxyfucose

GalNAcA:

2-acetamido-2-deoxygalacturonic acid

GLC:

gas-liquid chromatography

HR ESI MS:

high-resolution electrospray ionization mass spectrometry

Hb:

3-hydroxybutanoyl

HMBC:

heteronuclear multiple-bond correlation

KL:

K locus

Leg:

5,7-diamino-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic (legionaminic) acid

ManNAcA:

2-acetamido-2-deoxymannuronic acid

NMR:

nuclear magnetic resonance

QuiNAc4NAc:

2.4-diacetamido-2,4,6-trideoxyglucose (2,4-diacetamido-2,4-dideoxyquinovose)

ROESY:

rotating-frame nuclear Overhauser effect spectroscopy

TOCSY:

total correlation spectroscop

REFERENCES

  1. Doi, Y., Murray, G. L., and Peleg, A. Y. (2015) Acinetobacter baumannii: evolution of antimicrobial resistance-treatment options, Semin. Resp. Crit. Care Med., 36, 85-98.

    Article  Google Scholar 

  2. Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., and Lee, S. H. (2015) Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options, Front. Cell. Infect. Microbiol., 7, 55, doi: 10.3389/fcimb.2017.00055.

    Article  CAS  Google Scholar 

  3. Kenyon, J. J., and Hall, R. M. (2013) Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes, PLoS One, 8, e62160, doi: 10.1371/journal.pone.0062160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hu, D., Liu, B., Dijkshoorn, L., Wang, L., and Reeves, P. R. (2013) Diversity in the major polysaccharide antigen of Acinetobacter baumannii assessed by DNA sequencing, and development of a molecular serotyping scheme, PLoS One, 8, e70329, doi: 10.1371/journal.pone.0070329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wyres, L., Cahill, S. M., Holt, K. E., Hall, R. M., and Kenyon, J. J. (2020) Identification of Acinetobacter baumannii loci for capsular polysaccharide (KL) and lipooligosaccharide outer core (OCL) synthesis in genome assemblies using curated reference databases compatible with Kaptive, Microb. Genom, 6, doi: 10.1099/mgen.0.000339.

    Google Scholar 

  6. Popova, A. V., Lavysh, D. G., Klimuk, E. I., Edelstein, M. V., Bogun, A. G., Shneider, M. M., Goncharov, A. E., Leonov, S. V., and Severinov, K. V. (2017) Novel fri1-like viruses infecting Acinetobacter baumannii-vB_AbaP_AS11 and vB_AbaP_AS12-characterization, comparative genomic analysis, and host-recognition strategy, Viruses, 9, E188, doi: 10.3390/v9070188.

    Article  CAS  PubMed  Google Scholar 

  7. Popova, A. V., Zhilenkov, E. L., Myakinina, V. P., Krasilnikova, V. M., and Volozhantsev, N. V. (2012) Isolation and characterization of wide host range lytic bacteriophage AP22 infecting Acinetobacter baumannii, FEMS Microbiol. Lett., 332, 40-46, doi: 10.1111/j.1574-6968.2012.02573.x.

    Article  CAS  PubMed  Google Scholar 

  8. Popova, A. V., Shneider, M. M., Mikhailova, Y. V., Shelenkov, A. A., Shagin, D. A., Edelstein, M. V., and Kozlov, R. S. (2020) Complete genome sequence of Acinetobacter baumannii phage BS46, Microbiol. Res. Announc., (in press).

  9. Shashkov, A. S., Shneider, M. M., Senchenkova, S. N., Popova, A. V., Nikitina, A. S., Babenko, V. V., Kostryukova, E. S., Miroshnikov, K. A., Volozhantsev, N. V., and Knirel, Y. A. (2015) Structure of the capsular polysaccharide of Acinetobacter baumannii 1053 having the KL91 capsule biosynthesis gene locus, Carohydr. Res., 404, 79-82, doi: 10.1016/j.carres.2014.11.013.

    Article  CAS  Google Scholar 

  10. Kenyon, J. J., Shneider, M. M., Senchenkova, S. N., Shashkov, A. S., Siniagina, M. N., Malanin, S. Y., Popova, A. V., Miroshnikov, K. A., Hall, R. M., and Knirel, Y. A. (2016) K19 capsular polysaccharide of Acinetobacter baumannii is produced via a Wzy polymerase encoded in a small genomic island rather than the KL19 capsule gene cluster, Microbiology, 162, 1479-1489, doi: 10.1099/mic.0.000313.

    Article  CAS  PubMed  Google Scholar 

  11. Shashkov, A. S., Kenyon, J. J., Senchenkova, S. N., Shneider, M. M., Popova, A. V., Arbatsky, N. P., Miroshnikov, K. A., Volozhantsev, N. V., Hall, R. M., and Knirel, Y. A. (2016) Acinetobacter baumannii K27 and K44 capsular polysaccharides have the same K unit but different structures due to the presence of distinct wzy genes in otherwise closely related K gene clusters, Glycobiology, 26, 501-508, doi: 10.1093/glycob/cwv168.

    Article  CAS  PubMed  Google Scholar 

  12. Haseley, S. R., and Wilkinson, S. G. (1996) Structure of the O-specific polysaccharide of Acinetobacter baumannii O5 containing 2-acetamido-2-deoxy-d-galacturonic acid, Eur. J. Biochem., 237, 229-233.

    Article  CAS  Google Scholar 

  13. Vinogradov, E. V., Pantophlet, R., Dijkshoorn, L., Brade, L., Holst, O., and Brade, H. (1996) Structural and serological characterisation of two O-specific polysaccharides of Acinetobacter, Eur. J. Biochem., 239, 602-610.

    Article  CAS  Google Scholar 

  14. Taylor, N. M., Prokhorov, N. S., Guerrero-Ferreira, R. C., Shneider, M. M., Browning, C., Goldie, K. N., Stahlberg, H., and Leiman, P. G. (2016) Structure of the T4 baseplate and its function in triggering sheath contraction, Nature, 533, 346-352, doi: 10.1038/nature17971.

    Article  CAS  PubMed  Google Scholar 

  15. Tsedilin, A. M., Fakhrutdinov, A. N., Eremin, D. B., Zalesskiy, S. S., Chizhov, A. O., Kolotyrkina, N. G., and Ananikov, V. P. (2015) How sensitive and accurate are routine NMR and MS measurements, Mendeleev Commun., 25, 454-456.

    Article  CAS  Google Scholar 

  16. Westphal, O., and Jann, K. (1965) Bacterial lipopolysaccharides: extraction with phenol-water and further applications of the procedure, in Methods in carbohydrate chemistry, (Whistler, R. L., ed.) 5, Academic Press, New York, pp. 83-91.

  17. Popova, A. V., Shneider, M. M., Myakinina, V. P., Bannov, V. A., Edelstein, M. V., Rubalskii, E. O., Aleshkin, A. V., Fursova, N. K., and Volozhantsev, N. V. (2019) Characterization of myophage AM24 infecting Acinetobacter baumannii of the K9 capsular type, Arch. Virol., 164, 1493-1497, doi: 10.1007/s00705-019-04208-x.

    Article  CAS  PubMed  Google Scholar 

  18. Oliveira, H., Mendes, A., Fraga, A. G., Ferreira, A., Pimenta, A. I., Mil-Homens, D., Fialho, A. M., Pedrosa, J., and Azeredo, J. (2019) K2 capsule depolymerase is highly stable, is refractory to resistance, and protects larvae and mice from Acinetobacter baumannii sepsis, Appl. Environ. Microbiol., 85, doi: 10.1128/AEM.00934-19.

    Article  Google Scholar 

  19. Liu, Y., Leung, S. S. Y., Guo, Y., Zhao, L., Jiang, N., Mi, L., Li, P., Wang, C., Qin, Y., Mi, Z., Bai, C., and Gao, Z. (2019) The capsule depolymerase Dpo48 rescues Galleria mellonella and mice From Acinetobacter baumannii systemic infections, Front. Microbiol., 10, 545, doi: 10.3389/fmicb.2019.00545.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Oliveira, H., Costa, A. R., Konstantinides, N., Ferreira, A., Akturk, E., Sillankorva, S., Nemec, A., Shneider, M., Dötsch, A., and Azeredo, J. (2017) Ability of phages to infect Acinetobacter calcoaceticus-Acinetobacter baumannii complex species through acquisition of different pectate lyase depolymerase domains, Environ. Microbiol., 19, 5060-5077, doi: 10.1111/1462-2920.13970.

    Article  CAS  PubMed  Google Scholar 

  21. Lee, I. M., Yang, F. L., Chen, T. L., Liao, K. S., Ren, C. T., Lin, N.T., Chang, Y. P., Wu, C. Y., and Wu, S. H. (2018) Pseudaminic acid on exopolysaccharide of Acinetobacter baumannii plays a critical role in phage-assisted preparation of glycoconjugate vaccine with high antigenicity, J. Am. Chem. Soc., 140, 8639-8643, doi: 10.1021/jacs.8b04078.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project No. 19-14-00273; isolation, monosaccharide analysis, and structural analysis of CPS digestion products), Russian Science Foundation (project No. 18-15-00403; cloning, expression, and purification of BS46 recombinant depolymerase), and Ministry of Science and Higher Education of the Russian Federation (agreement 075-15-2019-1671 of October 31, 2019; cultivation of A. baumannii 1053, 1432, and B05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Knirel.

Ethics declarations

This article does not contain any studies with human participants or animals performed by any of the authors. The authors declare no conflict of interests.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knirel, Y., Shneider, M., Popova, A. et al. Mechanisms of Acinetobacter baumannii Capsular Polysaccharide Cleavage by Phage Depolymerases. Biochemistry Moscow 85, 567–574 (2020). https://doi.org/10.1134/S0006297920050053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297920050053

Keywords

Navigation